Groundwater Monitoring Protocols, Standards, and Sites
Best Management Practice

1. Objective

The objective of this Best Management Practice (BMP) is to assist in the development of Monitoring Protocols. The California Department of Water Resources (the Department or DWR) has developed this document as part of the obligation in the Technical Assistance chapter (Chapter 7) of the Sustainable Groundwater Management Act (SGMA) to support the long-term sustainability of California’s groundwater basins. Information provided in this BMP provides technical assistance to Groundwater Sustainability Agencies (GSAs) and other stakeholders to aid in the establishment of consistent data collection processes and procedures. In addition, this BMP can be used by GSAs to adopt a set of sampling and measuring procedures that will yield similar data regardless of the monitoring personnel. Finally, this BMP identifies available resources to support the development of monitoring protocols.

This BMP includes the following sections:

1. **Objective.** A brief description of how and where monitoring protocols are required under SGMA and the overall objective of this BMP.
2. **Use and Limitations.** A brief description of the use and limitations of this BMP.
4. **Relationship of Monitoring Protocols to other BMPs.** A description of how this BMP is connected with other BMPS.
5. **Technical Assistance.** Technical content providing guidance for regulatory sections.
6. **Key Definitions.** Descriptions of definitions identified in the GSP Regulations or SGMA.
7. **Related Materials.** References and other materials that provide supporting information related to the development of Groundwater Monitoring Protocols.
2. Use and Limitations

BMPs developed by the Department provide technical guidance to GSAs and other stakeholders. Practices described in these BMPs do not replace the GSP Regulations, nor do they create new requirements or obligations for GSAs or other stakeholders. In addition, using this BMP to develop a GSP does not equate to an approval determination by the Department. All references to GSP Regulations relate to Title 23 of the California Code of Regulations (CCR), Division 2, Chapter 1.5, and Subchapter 2. All references to SGMA relate to California Water Code sections in Division 6, Part 2.74.

Establishing data collection protocols that are based on best available scientific methods is essential. Protocols that can be applied consistently across all basins will likely yield comparable data. Consistency of data collection methods reduces uncertainty in the comparison of data and facilitates more accurate communication within basins as well as between basins.

Basic minimum technical standards of accuracy lead to quality data that will better support implementation of GSPs.

4. Relationship of Monitoring Protocol to Other BMPs

Groundwater monitoring is a fundamental component of SGMA, as each GSP must include a sufficient network of data that demonstrates measured progress toward the achievement of the sustainability goal for each basin. For this reason, a standard set of protocols need to be developed and utilized.

It is important that data is developed in a manner consistent with the basin setting, planning, and projects/management actions steps identified on Figure 1 and the GSP Regulations. The inclusion of monitoring protocols in the GSP Regulations also emphasizes the importance of quality empirical data to support GSPs and provide comparable information from basin to basin.

Figure 1 provides a logical progression for the development of a GSP and illustrates how monitoring protocols are linked to other related BMPs. This figure also shows the context of the BMPs as they relate to various steps to sustainability as outlined in the GSP Regulations. The monitoring protocol BMP is part of the Monitoring step identified in Figure 1.
The BMPs and Guidance Documents inform various steps in the workflow toward increased sustainability. These steps may be repeated or re-ordered as a basin approaches its sustainability goal.

Figure 1 – Logical Progression of Basin Activities Needed to Increase Basin Sustainability
5. TECHNICAL ASSISTANCE

23 CCR §352.2. Monitoring Protocols. Each Plan shall include monitoring protocols adopted by the Agency for data collection and management, as follows:
(a) Monitoring protocols shall be developed according to best management practices.
(b) The Agency may rely on monitoring protocols included as part of the best management practices developed by the Department, or may adopt similar monitoring protocols that will yield comparable data.
(c) Monitoring protocols shall be reviewed at least every five years as part of the periodic evaluation of the Plan, and modified as necessary.

The GSP Regulations specifically call out the need to utilize protocols identified in this BMP, or develop similar protocols. The following technical protocols provide guidance based upon existing professional standards and are commonly adopted in various groundwater-related programs. They provide clear techniques that yield quality data for use in the various components of the GSP. They can be further elaborated on by individual GSAs in the form of standard operating procedures which reflect specific local requirements and conditions. While many methodologies are suggested in this BMP, it should be understood that qualified professional judgment should be used to meet the specific monitoring needs.

The following BMPs may be incorporated into a GSP’s monitoring protocols section for collecting groundwater elevation data. A GSP that adopts protocols that deviate from these BMPs must demonstrate that they will yield comparable data.

PROTOCOLS FOR ESTABLISHING A MONITORING PROGRAM

The protocol for establishment of a monitoring program should be evaluated in conjunction with the Monitoring Network and Identification of Data Gaps BMP and other BMPs. Monitoring protocols must take into consideration the Hydrogeologic Conceptual Model, Water Budget, and Modeling BMPs when considering the data needs to meet GSP objectives and the sustainability goal.

It is suggested that each GSP incorporate the Data Quality Objective (DQO) process following the U.S. EPA Guidance on Systematic Planning Using the Data Quality Objectives Process (EPA, 2006). Although strict adherence to this method is not required, it does provide a robust approach to consider and assures that data is collected with a specific purpose in mind, and efforts for monitoring are as efficient as possible to achieve the objectives of the GSP and compliance with the GSP Regulations.
The DQO process presents a method that can be applied directly to the sustainability criteria quantitative requirements through the following steps.

1. **State the problem** – Define sustainability indicators and planning considerations of the GSP and sustainability goal.

2. **Identify the goal** – Describe the quantitative measurable objectives and minimum thresholds for each of the sustainability indicators.

3. **Identify the inputs** – Describe the data necessary to evaluate the sustainability indicators and other GSP requirements (i.e. water budget).

4. **Define the boundaries of the study** – This is commonly the extent of the Bulletin 118 groundwater basin or subbasin, unless multiple GSPs are prepared for a given basin. In that case, evaluation of the coordination plan and specifically how the monitoring will be comparable and meet the sustainability goals for the entire basin.

5. **Develop an analytical approach** – Determine how the quantitative sustainability indicators will be evaluated (i.e. are special analytical methods required that have specific data needs).

6. **Specify performance or acceptance criteria** – Determine what quality the data must have to achieve the objective and provide some assurance that the analysis is accurate and reliable.

7. **Develop a plan for obtaining data** – Once the objectives are known determine how these data should be collected. Existing data sources should be used to the greatest extent possible.

These steps of the DQO process should be used to guide GSAs to develop the most efficient monitoring process to meet the measurable objectives of the GSP and the sustainability goal. The DQO process is an iterative process and should be evaluated regularly to improve monitoring efficiencies and meet changing planning and project needs. Following the DQO process, GSAs should also include a data quality control and quality assurance plan to guide the collection of data.

Many monitoring programs already exist as part of ongoing groundwater management or other programs. To the extent possible, the use of existing monitoring data and programs should be utilized to meet the needs for characterization, historical record documentation, and continued monitoring for the SGMA program. However, an evaluation of the existing monitoring data should be performed to assure the data being collected meets the DQOs, regulatory requirements, and data collection protocol described in this BMP. While this BMP provides guidance for collection of various
regulatory based requirements, there is flexibility among the various methodologies available to meet the DQOs based upon professional judgment (local conditions or project needs).

At a minimum, for each monitoring site, the following information or procedure should be collected and documented:

- Long-term access agreements. Access agreements should include year-round site access to allow for increased monitoring frequency.
- A unique identifier that includes a general written description of the site location, date established, access instructions and point of contact (if necessary), type of information to be collected, latitude, longitude, and elevation. Each monitoring location should also track all modifications to the site in a modification log.

PROTOCOLS FOR MEASURING GROUNDWATER LEVELS

This section presents considerations for the methodology of collection of groundwater level data such that it meets the requirements of the GSP Regulations and the DQOs of the specific GSP. Groundwater levels are a fundamental measure of the status of groundwater conditions within a basin. In many cases, relationships of the sustainability indicators may be able to be correlated with groundwater levels. The quality of this data must consider the specific aquifer being monitored and the methodology for collecting these levels.

The following considerations for groundwater level measuring protocols should ensure the following:

- Groundwater level data are taken from the correct location, well ID, and screen interval depth
- Groundwater level data are accurate and reproducible
- Groundwater level data represent conditions that inform appropriate basin management DQOs
- All salient information is recorded to correct, if necessary, and compare data
- Data are handled in a way that ensures data integrity
General Well Monitoring Information

The following presents considerations for collection of water level data that include regulatory required components as well as those which are recommended.

- Groundwater elevation data will form the basis of basin-wide water-table and piezometric maps, and should approximate conditions at a discrete period in time. Therefore, all groundwater levels in a basin should be collected within as short a time as possible, preferably within a 1 to 2 week period.

- Depth to groundwater must be measured relative to an established Reference Point (RP) on the well casing. The RP is usually identified with a permanent marker, paint spot, or a notch in the lip of the well casing. By convention in open casing monitoring wells, the RP reference point is located on the north side of the well casing. If no mark is apparent, the person performing the measurement should measure the depth to groundwater from the north side of the top of the well casing.

- The elevation of the RP of each well must be surveyed to the North American Vertical Datum of 1988 (NAVD88), or a local datum that can be converted to NAVD88. The elevation of the RP must be accurate to within 0.5 foot. It is preferable for the RP elevation to be accurate to 0.1 foot or less. Survey grade global navigation satellite system (GNSS) global positioning system (GPS) equipment can achieve similar vertical accuracy when corrected. Guidance for use of GPS can be found at USGS http://water.usgs.gov/osw/gps/. Hand-held GPS units likely will not produce reliable vertical elevation measurement accurate enough for the casing elevation consistent with the DQOs and regulatory requirements.

- The sampler should remove the appropriate cap, lid, or plug that covers the monitoring access point listening for pressure release. If a release is observed, the measurement should follow a period of time to allow the water level to equilibrate.

- Depth to groundwater must be measured to an accuracy of 0.1 foot below the RP. It is preferable to measure depth to groundwater to an accuracy of 0.01 foot. Air lines and acoustic sounders may not provide the required accuracy of 0.1 foot.

- The water level meter should be decontaminated after measuring each well.
Where existing wells do not meet the base standard as described in the GSP Regulations or the considerations provided above, new monitoring wells may need to be constructed to meet the DQOs of the GSP. The design, installation, and documentation of new monitoring wells must consider the following:

- Construction consistent with California Well Standards as described in Bulletins 74-81 and 74-90, and local permitting agency standards of practice.

- Logging of borehole cuttings under the supervision of a California Professional Geologist and described consistent with the Unified Soil Classification System methods according to ASTM standard D2487-11.

- Written criteria for logging of borehole cuttings for comparison to known geologic formations, principal aquifers and aquitards/aquicludes, or specific marker beds to aid in consistent stratigraphic correlation within and across basins.

- Geophysical surveys of boreholes to aid in consistency of logging practices. Methodologies should include resistivity, spontaneous potential, spectral gamma, or other methods as appropriate for the conditions. Selection of geophysical methods should be based upon the opinion of a professional geologist or professional engineer, and address the DQOs for the specific borehole and characterization needs.

- Prepare and submit State well completion reports according to the requirements of §13752. Well completion report documentation should include geophysical logs, detailed geologic log, and formation identification as attachments. An example well completion as-built log is illustrated in Figure 2. DWR well completion reports can be filed directly at the Online System for Well Completion Reports (OSWCR) http://water.ca.gov/oswcr/index.cfm.
Figure 2 – Example As-Built Multi-Completion Monitoring Well Log
Measuring Groundwater Levels

Well construction, anticipated groundwater level, groundwater level measuring equipment, field conditions, and well operations should be considered prior collection of the groundwater level measurement. The USGS *Groundwater Technical Procedures* (Cunningham and Schalk, 2011) provide a thorough set of procedures which can be used to establish specific Standard Operating Procedures (SOPs) for a local agency. Figure 3 illustrates a typical groundwater level measuring event and simultaneous pressure transducer download.

![Collection of Water Level Measurement and Pressure Transducer Download](image)

Figure 3 – Collection of Water Level Measurement and Pressure Transducer Download

The following points provide a general approach for collecting groundwater level measurements:

- Measure depth to water in the well using procedures appropriate for the measuring device. Equipment must be operated and maintained in accordance with manufacturer’s instructions. Groundwater levels should be measured to the nearest 0.01 foot relative to the RP.
- For measuring wells that are under pressure, allow a period of time for the groundwater levels to stabilize. In these cases, multiple measurements should be collected to ensure the well has reached equilibrium such that no significant changes in water level are observed. Every effort should be made to ensure that a representative stable depth to groundwater is recorded. If a well does not stabilize, the quality of the value should be appropriately qualified as a
questionable measurement. In the event that a well is artesian, site specific procedures should be developed to collect accurate information and be protective of safety conditions associated with a pressurized well. In many cases, an extension pipe may be adequate to stabilize head in the well. Record the dimension of the extension and document measurements and configuration.

- The sampler should calculate the groundwater elevation as:
 \[GWE = RPE - DTW \]

 Where:
 - GWE = Groundwater Elevation
 - RPE = Reference Point Elevation
 - DTW = Depth to Water

 The sampler must ensure that all measurements are in consistent units of feet, tenths of feet, and hundredths of feet. Measurements and RPEs should not be recorded in feet and inches.

Recording Groundwater Levels

- The sampler should record the well identifier, date, time (24-hour format), RPE, height of RP above or below ground surface, DTW, GWE, and comments regarding any factors that may influence the depth to water readings such as weather, nearby irrigation, flooding, potential for tidal influence, or well condition. If there is a questionable measurement or the measurement cannot be obtained, it should be noted. An example of a field sheet with the required information is shown in Figure 4. It includes questionable measurement and no measurement codes that should be noted. This field sheet is provided as an example. Standardized field forms should be used for all data collection. The aforementioned USGS *Groundwater Technical Procedures* offers a number of example forms.

- The sampler should replace any well caps or plugs, and lock any well buildings or covers.

- All data should be entered into the GSA data management system (DMS) as soon as possible. Care should be taken to avoid data entry mistakes and the entries should be checked by a second person for compliance with the DQOs.
Figure 4 – Example of Water Level Well Data Field Collection Form
Pressure Transducers

Groundwater levels and/or calculated groundwater elevations may be recorded using pressure transducers equipped with data loggers installed in monitoring wells. When installing pressure transducers, care must be exercised to ensure that the data recorded by the transducers is confirmed with hand measurements.

The following general protocols must be followed when installing a pressure transducer in a monitoring well:

- The sampler must use an electronic sounder or chalked steel tape and follow the protocols listed above to measure the groundwater level and calculate the groundwater elevation in the monitoring well to properly program and reference the installation. It is recommended that transducers record measured groundwater level to conserve data capacity; groundwater elevations can be calculated at a later time after downloading.

- The sampler must note the well identifier, the associated transducer serial number, transducer range, transducer accuracy, and cable serial number.

- Transducers must be able to record groundwater levels with an accuracy of at least 0.1 foot. Professional judgment should be exercised to ensure that the data being collected is meeting the DQO and that the instrument is capable. Consideration of the battery life, data storage capacity, range of groundwater level fluctuations, and natural pressure drift of the transducers should be included in the evaluation.

- The sampler must note whether the pressure transducer uses a vented or non-vented cable for barometric compensation. Vented cables are preferred, but non-vented units provide accurate data if properly corrected for natural barometric pressure changes. This requires the consistent logging of barometric pressures to coincide with measurement intervals.

- Follow manufacturer specifications for installation, calibration, data logging intervals, battery life, correction procedure (if non-vented cables used), and anticipated life expectancy to assure that DQOs are being met for the GSP.

- Secure the cable to the well head with a well dock or another reliable method. Mark the cable at the elevation of the reference point with tape or an indelible marker. This will allow estimates of future cable slippage.

- The transducer data should periodically be checked against hand measured groundwater levels to monitor electronic drift or cable movement. This should happen during routine site visits, at least annually or as necessary to maintain data integrity.
• The data should be downloaded as necessary to ensure no data is lost and entered into the basin’s DMS following the QA/QC program established for the GSP. Data collected with non-vented data logger cables should be corrected for atmospheric barometric pressure changes, as appropriate. After the sampler is confident that the transducer data have been safely downloaded and stored, the data should be deleted from the data logger to ensure that adequate data logger memory remains.

PROTOCOLS FOR SAMPLING GROUNDWATER QUALITY

The following protocols can be incorporated into a GSP’s monitoring protocols for collecting groundwater quality data. More detailed sampling procedures and protocols are included in the standards and guidance documents listed at the end of this BMP. A GSP that adopts protocols that deviate from these BMPs must demonstrate that the adopted protocols will yield comparable data.

In general, the use of existing water quality data within the basin should be done to the greatest extent possible if it achieves the DQOs for the GSP. In some cases it may be necessary to collect additional water quality data to support monitoring programs or evaluate specific projects. The USGS National Field Manual for the Collection of Water Quality Data (Wilde, 2005) should be used to guide the collection of reliable data. Figure 5 illustrates a typical groundwater quality sampling setup.

Figure 5 – Typical Groundwater Quality Sampling Event
All analyses should be performed by a laboratory certified under the State Environmental Laboratory Accreditation Program. The specific analytical methods are beyond the scope of this BMP, but should be commiserate with other programs evaluating water quality within the basin for comparative purposes.

Groundwater quality sampling protocols should ensure that:

- Groundwater quality data are taken from the correct location
- Groundwater quality data are accurate and reproducible
- Groundwater quality data represent conditions that inform appropriate basin management and are consistent with the DQOs
- All salient information is recorded to normalize, if necessary, and compare data
- Data are handled in a way that ensures data integrity

The following points are general guidance in addition to the techniques presented in the previously mentioned USGS *National Field Manual for the Collection of Water Quality Data.*

Standardized protocols include the following:

- Prior to sampling, the sampler must contact the laboratory to schedule laboratory time, obtain appropriate sample containers, and clarify any sample holding times or sample preservation requirements.
- Each well used for groundwater quality monitoring must have a unique identifier. This identifier must appear on the well housing or the well casing to avoid confusion.
- In the case of wells with dedicated pumps, samples should be collected at or near the wellhead. Samples should not be collected from storage tanks, at the end of long pipe runs, or after any water treatment.
- The sampler should clean the sampling port and/or sampling equipment and the sampling port and/or sampling equipment must be free of any contaminants. The sampler must decontaminate sampling equipment between sampling locations or wells to avoid cross-contamination between samples.
- The groundwater elevation in the well should be measured following appropriate protocols described above in the groundwater level measuring protocols.
- For any well not equipped with low-flow or passive sampling equipment, an adequate volume of water should be purged from the well to ensure that the groundwater sample is representative of ambient groundwater and not stagnant water in the well casing. Purging three well casing volumes is generally
considered adequate. Professional judgment should be used to determine the proper configuration of the sampling equipment with respect to well construction such that a representative ambient groundwater sample is collected. If pumping causes a well to be evacuated (go dry), document the condition and allow well to recover to within 90% of original level prior to sampling. Professional judgment should be exercised as to whether the sample will meet the DQOs and adjusted as necessary.

- Field parameters of pH, electrical conductivity, and temperature should be collected for each sample. Field parameters should be evaluated during the purging of the well and should stabilize prior to sampling. Measurements of pH should only be measured in the field, lab pH analysis are typically unachievable due to short hold times. Other parameters, such as oxidation-reduction potential (ORP), dissolved oxygen (DO) (in situ measurements preferable), or turbidity, may also be useful for meeting DQOs of GSP and assessing purge conditions. All field instruments should be calibrated daily and evaluated for drift throughout the day.

- Sample containers should be labeled prior to sample collection. The sample label must include: sample ID (often well ID), sample date and time, sample personnel, sample location, preservative used, and analytes and analytical method.

- Samples should be collected under laminar flow conditions. This may require reducing pumping rates prior to sample collection.

- Samples should be collected according to appropriate standards such as those listed in the Standard Methods for the Examination of Water and Wastewater, USGS National Field Manual for the Collection of Water Quality Data, or other appropriate guidance. The specific sample collection procedure should reflect the type of analysis to be performed and DQOs.

- All samples requiring preservation must be preserved as soon as practically possible, ideally at the time of sample collection. Ensure that samples are appropriately filtered as recommended for the specific analyte. Entrained solids can be dissolved by preservative leading to inconsistent results of dissolve analytes. Specifically, samples to be analyzed for metals should be field-filtered prior to preservation; do not collect an unfiltered sample in a preserved container.

- Samples should be chilled and maintained at 4 °C to prevent degradation of the sample. The laboratory’s Quality Assurance Management Plan should detail appropriate chilling and shipping requirements.
• Samples must be shipped under chain of custody documentation to the appropriate laboratory promptly to avoid violating holding time restrictions.

• Instruct the laboratory to use reporting limits that are equal to or less than the applicable DQOs or regional water quality objectives/screening levels.

Special protocols for low-flow sampling equipment

In addition to the protocols listed above, sampling using low-flow sample equipment should adopt the following protocols derived from EPA’s *Low-flow (minimal drawdown) ground-water sampling procedures* (Puls and Barcelona, 1996). These protocols apply to low-flow sampling equipment that generally pumps between 0.1 and 0.5 liters per minute. These protocols are not intended for bailers.

Special protocols for passive sampling equipment

In addition to the protocols listed above, passive diffusion samplers should follow protocols set forth in [USGS Fact Sheet 088-00](https://pubs.usgs.gov/factsheet/fs08800/).

PROTOCOLS FOR MONITORING SEAWATER INTRUSION

Monitoring seawater intrusion requires analysis of the chloride concentrations within groundwater of each principal aquifer subject to seawater intrusion. While no significant standardized approach exists, the methodologies described above for degraded water quality can be applied for the collection of groundwater samples. In addition to the protocol described above, the following protocols should be followed:

• Water quality samples should be collected and analyzed at least semi-annually. Samples will be analyzed for dissolved chloride at a minimum. It may be beneficial to include analyses of iodide and bromide to aid in determination of salinity source. More frequent sampling may be necessary to meet DQOs of GSP. The development of surrogate measures of chloride concentration may facilitate cost-effective means to monitor more frequently to observe the range of conditions and variability of the flow dynamics controlling seawater intrusion.

• Groundwater levels will be collected at a frequency adequate to characterize changes in head in the vicinity of the leading edge of degraded water quality in each principal aquifer. Frequency may need to be increased in areas of known preferential pathways, groundwater pumping, or efficacy evaluation of mitigation projects.

• The use of geophysical surveys, electrical resistivity, or other methods may provide for identification of preferential pathways and optimize monitoring well placement and evaluation of the seawater intrusion front. Professional judgment
should be exercised to determine the appropriate methodology and whether the DQOs for the GSP would be met.

PROTOCOLS FOR MEASURING STREAMFLOW

Monitoring of streamflow is necessary for incorporation into water budget analysis and for use in evaluation of stream depletions associated with groundwater extractions. The use of existing monitoring locations should be incorporated to the greatest extent possible. Many of these streamflow monitoring locations currently follow the protocol described below.

Establishment of new streamflow discharge sites should consider the existing network and the objectives of the new location. Professional judgment should be used to determine the appropriate permitting that may be necessary for the installation of any monitoring locations along surface water bodies. Regular frequent access will be necessary to these sites for the development of ratings curves and maintenance of equipment.

To establish a new streamflow monitoring station special consideration must be made in the field to select an appropriate location for measuring discharge. Once a site is selected, development of a relationship of stream stage to discharge will be necessary to provide continuous estimates of streamflow. Several measurements of discharge at a variety of stream stages will be necessary to develop the ratings curve correlating stage to discharge. The use of Acoustic Doppler Current Profilers (ADCPs) can provide accurate estimates of discharge in the correct settings. Professional judgment must be exercised to determine the appropriate methodology. Following development of the ratings curve a simple stilling well and pressure transducer with data logger can be used to evaluate stage on a frequent basis. A simple stilling well and staff gage is illustrated in Figure 6.

Streamflow measurements should be collected, analyzed, and reported in accordance with the procedures outlined in USGS Water Supply Paper 2175, Volume 1. – Measurement of Stage Discharge and Volume 2. – Computation of Discharge. This methodology is currently being used by both the USGS and DWR for existing streamflow monitoring throughout the State.
PROTOCOLS FOR MEASURING SUBSIDENCE

Evaluating and monitoring inelastic land subsidence can utilize multiple data sources to evaluate the specific conditions and associated causes. To the extent possible, the use of existing data should be utilized. Subsidence can be estimated from numerous techniques, they include: level surveying tied to known stable benchmarks or benchmarks located outside the area being studied for possible subsidence; installing and tracking changes in borehole extensometers; obtaining data from continuous GPS (CGPS) locations, static GPS surveys or Real-Time-Kinematic (RTK) surveys; or analyzing Interferometric Synthetic Aperture Radar (InSAR) data. No standard procedures exist for collecting data from the potential subsidence monitoring approaches. However, an approach may include:

- Identification of land subsidence conditions.
 - Evaluate existing regional long-term leveling surveys of regional infrastructure, i.e. roadways, railroads, canals, and levees.
 - Inspect existing county and State well records where collapse has been noted for well repairs or replacement.
 - Determine if significant fine-grained layers are present such that the potential for collapse of the units could occur should there be significant depressurization of the aquifer system.
o Inspect geologic logs and the hydrogeologic conceptual model to aid in identification of specific units of concern.

o Collect regional remote-sensing information such as InSAR, commonly provided by USGS and NASA. Data availability is currently limited, but future resources are being developed.

- Monitor regions of suspected subsidence where potential exists.

o Establish CGPS network to evaluate changes in land surface elevation.

o Establish leveling surveys transects to observe changes in land surface elevation.

o Establish extensometer network to observe land subsidence. An example of a typical extensometer design is illustrated in Figure 7. There are a variety of extensometer designs and they should be selected based on the specific DQOs.

Various standards and guidance documents for collecting data include:

- Leveling surveys must follow surveying standards set out in the California Department of Transportation’s Caltrans Surveys Manual.

- GPS surveys must follow surveying standards set out in the California Department of Transportation’s Caltrans Surveys Manual.

- USGS has been performing subsidence surveys within several areas of California. These studies are sound examples for appropriate methods and should be utilized to the extent possible and where available:

- Instruments installed in borehole extensometers must follow the manufacturer’s instructions for installation, care, and calibration.

- Availability of InSAR data is improving and will increase as programs are developed. This method requires expertise in analysis of the raw data and will likely be made available as an interpretative report for specific regions.
Figure 7 – Simplified Extensometer Diagram
6. **Key Definitions**

The key definitions and sections related to Groundwater Monitoring Protocols, Standards, and Sites outlined in applicable SGMA code and regulations are provided below for reference.

Groundwater Sustainability Plan Regulations ([California Code of Regulations §351](https://www.cop.senate.ca.gov/Regulations/351))

- §351(h) “Best available science” refers to the use of sufficient and credible information and data, specific to the decision being made and the time frame available for making that decision, that is consistent with scientific and engineering professional standards of practice.
- §351(i) “Best management practice” refers to a practice, or combination of practices, that are designed to achieve sustainable groundwater management and have been determined to be technologically and economically effective, practicable, and based on best available science.

Monitoring Protocols Reference

§352.2. Monitoring Protocols

Each Plan shall include monitoring protocols adopted by the Agency for data collection and management, as follows:

(a) Monitoring protocols shall be developed according to best management practices.

(b) The Agency may rely on monitoring protocols included as part of the best management practices developed by the Department, or may adopt similar monitoring protocols that will yield comparable data.

(c) Monitoring protocols shall be reviewed at least every five years as part of the periodic evaluation of the Plan, and modified as necessary.

SGMA Reference

§10727.2. Required Plan Elements

(f) Monitoring protocols that are designed to detect changes in groundwater levels, groundwater quality, inelastic surface subsidence for basins for which subsidence has been identified as a potential problem, and flow and quality of surface water that directly affect groundwater levels or quality or are caused by groundwater extraction in the basin. The monitoring protocols shall be designed to generate information that promotes efficient and effective groundwater management.
7. RELATED MATERIALS

CASE STUDIES

STANDARDS

GUIDANCE

California Department of Water Resources

ONLINE RESOURCES

