CNA Tasks 1, 2 & 6
Work Progress Briefing

Oroville Dam Safety Ad Hoc Committee – Meeting No. 3
January 10, 2019
Task 1 – Spillways
Task 1 Need Statement

What additional enhancements for spillway reliability, redundancy, and resiliency are needed at Oroville Dam?

Objective T1-1 – Determine what enhancements should be added to FCO Headworks and Chute to provide reliability and resiliency for spillway releases.

Objective T1-2 – Determine what new features or facilities should be added to provide redundancy to the FCO Headworks and Chute for spillway releases.

Objective T1-3 – Determine what new features or facilities should be added to provide reliability and resiliency to the Emergency Spillway monoliths for large spillway discharges.

Constraints

- Physical capacity limits of Existing Facilities
- Reliability of Existing Facilities
- Regulatory requirements
- Additional physical constraints:
 - Flood Inflows
 - Channel capacity
 - Geology
 - Scour potential
 - Existing facilities
 - Operations
 - Fishery impacts
Task 1 Need Statement

What additional enhancements for spillway reliability, redundancy, and resiliency are needed at Oroville Dam?

Objective T1-4 – Determine what new features or facilities should be added to the Emergency Spillway to provide reliability and resiliency to the unlined spillway channel downstream of the Secant Pile Wall in order to preserve downstream conveyance.

Objective T1-5 – Determine what new features or facilities should be added to the Emergency Spillway to provide reliability and resiliency to the unlined spillway channel downstream of the Secant Pile Wall in order to protect the Hyatt PP from flooding.

Objective T1-6 – Determine what new features or facilities should be added Oroville Dam and its spillways (e.g. raising embankment crest, widening Emergency Spillway, lowering crest of Emergency Spillway) to provide reliability and resiliency in passing current and future Inflow Design Floods.

Constraints

- Climate change
- Tolerable risk
- Allowable/tolerable damage to Oroville spillways
- Damage to Downstream SWP facilities
- Downstream levee capacities
Task 2 – Operations Needs Assessment
Task 2 Need Statement

What candidate flood operations measures are appropriate for Oroville Dam?

Objectives, Constraints

Objective T2-1 – Incorporate relevant physical changes since 1970 WCM development in updated flood operations measures.

Objective T2-2 – Assess performance of operational measures for broad range of flood conditions to support risk-informed decision making.

Objective T2-3 – Develop candidate flood operation plan acceptable to USACE.

Objective T2-4 – Develop strategy that is sufficiently resilient and aligned with USACE guidelines to accommodate potential changes to climate.

Objective T2-5 – Develop operation plan that integrates with forecast-coordinated operation (F-CO) system created by DWR and Yuba Water Agency (YWA).

Constraints

- Existing infrastructure.
- Infrastructure modification measures.
- Availability of flexible reservoir-river system models.
- Inflow event probability information.
- USACE decision-making at local (Sacramento District) and regional (South Pacific Division) and national (HQUSACE) offices.
- Future climate changes are not known with certainty.
- Multi-agency coordination and collaboration between DWR, USACE, YWA, National Weather Service, California Nevada River Forecast Center (NWS CNRFC), and leading experts in the field of forecast based flood operations.
Task 6 – Instrumentation and Monitoring
Task 6 Objectives, Constraints

Task 6 Need Statement

What performance instrumentation and monitoring measures are needed for dam safety, reliability, redundancy and resiliency?

Objective T6-1 – Review instrumentation and monitoring equipment and procedures from pre-construction through present day. Validate previous conclusions.

Objective T6-2 – Identify opportunities for improvements to instrumentation that will support dam safety and improve regulatory compliance.

Constraints

- Existing instrumentation.
- Avoid damage to existing structures.
- Physical inaccessibility.
- Instrument reliability and life.
- Technology.
- Data review protocols and processes.
- Reporting and response.
Instrumentation Overview

- Piezometers
- Seepage Instruments
- Survey Monuments
- Seismic Instruments
Seepage Collection Locations

See Figure 7.6 For Core Block, Bypass Gallery, and Access Gallery Seepage Weir Locations.

Right Grout Gallery Seepage Weirs: 15+80, 21+20, 25+65

Hyatt Power Plant Sump Seepage Collection

Left Grout Gallery Seepage Weirs: 39+20, 42+60, 49+60

House T Seepage Collection

Toe Seepage Weir
Seepage Collection Locations

Toe Seepage Weir and Orifice

Bypass V-notch Weir
Grout Gallery - Seepage

Intermediate Weirs Are Installed in Right and Left Grout Galleries
Survey Monuments
Seismic Instruments
Potential Failure Modes - Summary

Part 12D - 2014

<table>
<thead>
<tr>
<th>PFM</th>
<th>Structure</th>
<th>Loading Type</th>
<th>Brief Description</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>FCO</td>
<td>Hydrologic</td>
<td>Uplift Pressure below the FCO during the PMF Leads to a Stability Issue of the FCO Structure</td>
<td>III</td>
</tr>
<tr>
<td>F2</td>
<td>Spillway/ Ogee</td>
<td>Hydrologic</td>
<td>Uplift Pressure below the Emergency Spillway Weir during PMF Leads to a Stability Issue of the Emergency Spillway Structure</td>
<td>III</td>
</tr>
<tr>
<td>F3</td>
<td>Dam/ FCO</td>
<td>Static/ Hydrologic</td>
<td>Breach near Dam Crest under High Reservoir Conditions due to Erosion of Fill at the Right Abutment Contact with FCO Structure</td>
<td>II</td>
</tr>
<tr>
<td>S1</td>
<td>Dam</td>
<td>Static</td>
<td>Internal Erosion of Fines from Dam Core Zone 1 Exiting into Transition Zone 2 due to Imperfect Filter Compatibility</td>
<td>II</td>
</tr>
</tbody>
</table>
PFM - Summary

<table>
<thead>
<tr>
<th>PFM</th>
<th>Structure</th>
<th>Loading Type</th>
<th>Brief Description</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>Dam</td>
<td>Static</td>
<td>Scour Erosion of Fines Initiating along a Crack in Zone 1 Core and Exiting into Transition Zone 2 due to Imperfect Filter Compatibly</td>
<td>II</td>
</tr>
<tr>
<td>S3</td>
<td>Dam</td>
<td>Static</td>
<td>Internal Erosion of Fines Initiating and Progressing along Outside of Broken Instrumentation Tubing within Trench that Extends Upstream to Downstream across Zone 1 Core at Dam Slab 53'00, El 940</td>
<td>IV</td>
</tr>
<tr>
<td>E1</td>
<td>Dam</td>
<td>Earthquake</td>
<td>Earthquake Loading during High Reservoir Pool Conditions Causes Transverse Crack to Form at Crest of Dam, Leading to Erosion and Breach at the Location of the Crack and Uncontrolled Release of Reservoir Water</td>
<td>IV</td>
</tr>
<tr>
<td>E2</td>
<td>Dam</td>
<td>Earthquake</td>
<td>Earthquake Opens Repaired Cracks or New Cracks in the Core Block, Leading to Erosion of Zone 1 Material from the Dam Core into the Gallery and Sump System and Development of a Void within the Core</td>
<td>IV</td>
</tr>
<tr>
<td>E3</td>
<td>Dam</td>
<td>Earthquake</td>
<td>Earthquake Occurs during a Wet Period in Which “Green Spot” Area of Left Dam Abutment is Saturated with a Perched Phreatic Condition, Resulting in Downstream Slope Instability</td>
<td>III</td>
</tr>
<tr>
<td>E4</td>
<td>Dam</td>
<td>Earthquake</td>
<td>Large Earthquake (on the order of the 84th Percentile) on the Cleveland Hills Fault Leads to Deformation and Loss of Freeboard and Overtopping of the Crest of the Dam</td>
<td>III</td>
</tr>
<tr>
<td>E5</td>
<td>Hyatt</td>
<td>Earthquake</td>
<td>Earthquake Causes Failure of the Slide Gate Hoist and Rapid Closure of Hyatt Intake Structure, Which Collapses Penstock due to Negative Pressure and Inability to Make Reservoir Releases through the Plant</td>
<td>III</td>
</tr>
<tr>
<td>E6</td>
<td>FCO</td>
<td>Earthquake</td>
<td>Earthquake Shaking under Normal Reservoir Pool Conditions Causes Failure of Corroded Radial Gate Tendons at the FCO Structure, Loss of Two (or More) Gates and Uncontrolled Release of Reservoir down to El 813</td>
<td>I</td>
</tr>
<tr>
<td>E7</td>
<td>FCO</td>
<td>Earthquake</td>
<td>Seismic Forces due to a Large Earthquake Damage the FCO Gates and Prevent Opening to Lower Reservoir as Reservoir is Rising, Resulting in Uncontrolled Release over the Emergency Spillway Section</td>
<td>III</td>
</tr>
<tr>
<td>E8</td>
<td>Emergency Spillway</td>
<td>Earthquake</td>
<td>Earthquake Loading under Normal Reservoir Pool Causes “Debonding” between the Concrete at the Base of the Ogee Weir and the Rock Foundation, Dislodging an Ogee Section Monolith, Resulting in Partial Release of Reservoir to Approximately El 850</td>
<td>III</td>
</tr>
<tr>
<td>O1</td>
<td>FCO</td>
<td>Operational</td>
<td>Human Error on Entering Gate Opening Setpoint Results in Uncontrolled Release</td>
<td>II</td>
</tr>
<tr>
<td>O2</td>
<td>FCO</td>
<td>Operational</td>
<td>SCADA Malfunction Results in Uncontrolled Release</td>
<td>II</td>
</tr>
<tr>
<td>O3</td>
<td>Powerplant</td>
<td>Operational</td>
<td>Generating Unit Comes out of Block due to Mechanical Failure of Head Cover</td>
<td>II</td>
</tr>
<tr>
<td>O4</td>
<td>FCO</td>
<td>Operational</td>
<td>Gate in the FCO Fails to Open during Flood Event due to Binding</td>
<td>III</td>
</tr>
<tr>
<td>O5</td>
<td>Palermo Tunnel</td>
<td>Operational</td>
<td>Failure of the Palermo Tunnel 30-inch Valve or Upstream Pipe Stub due to Corrosion</td>
<td>II</td>
</tr>
<tr>
<td>O6</td>
<td>River Outlet</td>
<td>Operational</td>
<td>Pressure Relief Wall in the River Outlet Blows Out, Resulting in High-Velocity Wind Which Damages Hydraulic Control Lines and Electrical Control Lines</td>
<td>IV</td>
</tr>
</tbody>
</table>
Questions?