A (Very) Brief Overview of Streamflow Hydrology: Natural and Human Processes That Influence Streamflow

Ian Ferguson
Marketa Elsner
Nancy Parker
Big Picture: It's Complicated...

Natural

- Weather
- Soils, Geology, Topography
- Vegetation

Streamflow

Human

- Storage, Diversion, Consumptive Use
- GW Pumping, Land Cover Change
- Etc...Etc...Etc...
Hydrologic Cycle

Atmospheric Processes

Land Surface Processes

Subsurface Processes
Natural Factors Affecting High/Low Flow

- **Meteorology**
 - Includes precipitation, wind, temperature, solar radiation, etc.
 - Affects water supply and demand
 - Affects streamflow on short and long-term timescales (e.g., floods, water supply)

Individual Weather Events

Sustained periods of above or below normal precipitation and/or ET

U.S. Drought Monitor

September 17, 2013

- **Legend**:
 - D0 Abnormally Dry
 - D1 Drought - Moderate
 - D2 Drought - Severe
 - D3 Drought - Extreme
 - D4 Drought - Exceptional

Drought Impact Types:
- + Short Term, typically 6 months (e.g., agriculture, grazedlands)
- + Long Term, typically 16 months (e.g., hydrology, ecology)

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

http://droughtmonitor.unl.edu/

Released Thursday, September 19, 2013

Author: David Miskus, NOAA/NOES/NCEP/CPC
Natural Factors Affecting High/Low Flow

- Antecedent Conditions
 - Typically only considered on shorter timescales, since they vary widely over longer periods
 - Significant effect on runoff and recharge generation
 - Saturation excess runoff
 - Rain on snow
 - Disturbances (e.g., fire, clearing)
Human Factors Affecting High/Low Flow

- **Land Cover Change**
 - increase in impervious surfaces, drainage/grading of wetlands, and other changes
 - can contribute to high runoff from precipitation events
 - can reduce groundwater recharge and baseflow
 - can result in higher peak flows and lower low flows

- **Consumptive Use**
 - surface water diversions
 - surface water depletions due to groundwater pumping (complex effect, difficult to quantify)

- **Storage**
 - storage typically reduces peak flows, increases low flows
 - can affect total flow in areas with high reservoir evaporation
Tools for Evaluating Streamflow

• Field Data and Analysis

• Common Measurements:
 ➢ Streamflow
 ➢ Groundwater elevation
 ➢ Meteorological conditions (temperature, wind speed, solar radiation, humidity, etc.)

• Common Uses:
 ➢ Water budget estimates
 ➢ Trend analysis
 ➢ Correlation analysis
Tools for Evaluating Streamflow

• Hydrologic Models

➤ What are Models?
 ▪ Computer software
 ▪ Mathematical relationships representing physical processes and/or system operations
 ▪ Calculate water balance based on natural and human factors

➤ Role of Models
 ▪ Isolate effects of individual factors (“numerical experiments”)
 ▪ Evaluate streamflow response to future changes (e.g., urbanization, climate change, etc.)
Reclamation Studies in California

• Current Long-Term Planning Studies in CA

- Evaluate water supply and demand under projected future conditions (climate, land use, etc.)

- Develop and evaluate alternatives to address projected imbalances in supply vs. demand

- For more information: http://www.usbr.gov/WaterSMART/bsp/
Summary:

• **Streamflow is Complicated…**
 - Many factors, some natural and some human
 - Factors act simultaneously
 …but with different locations and durations
 - Streamflow reflects complex interaction between factors in both space and time

• **Models are Important Tools for Understanding and Simulating Streamflow**
 - Represent relevant processes and interactions
 - Provide a means of isolating effects of individual factors – e.g., effects of groundwater pumping on streamflow
 - Allow us to evaluate complex interactions between factors
 - Models allow us to project future streamflow response to changing conditions