SANTA CLARA VALLEY WATER DISTRICT

Santa Clara Valley Water District
Groundwater Management Plan

Prepared by
Vanessa Reymers, Assistant Engineer II
Tracy Hemmeter, Program Administrator

Under the direction of
Behzad Ahmadi
Unit Manager
Groundwater Management Unit

Keith Whitman
Deputy Operating Officer
Water Supply Management Division

Walter L. Wadlow
Chief Operating Officer
Assistant General Manager

DISTRICT BOARD OF DIRECTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>District</th>
<th>Name</th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosemary Kamei</td>
<td>District 1</td>
<td>Tony Estremera, Chair</td>
<td>At Large</td>
</tr>
<tr>
<td>Joe Judge</td>
<td>District 2</td>
<td>Sig Sanchez</td>
<td>At Large</td>
</tr>
<tr>
<td>Richard P. Santos</td>
<td>District 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larry Wilson</td>
<td>District 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greg Zlotnick</td>
<td>District 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

OVERSIGHT MANAGER

Keith Whitman
Deputy Operating Officer
Water Supply Management Division

PROJECT SPONSOR

William G. Molnar

PROJECT MANAGER

Behzad Ahmadi

REPORT CONTRIBUTORS

Executive Summary

Behzad Ahmadi
Tracy Hemmeter
Vanessa Reymers

Introduction

Behzad Ahmadi
Tracy Hemmeter
Vanessa Reymers

Background

Behzad Ahmadi
Tracy Hemmeter

Groundwater Supply Management

Joseph Aguilera
Behzad Ahmadi
Hossein Ashktorab
Robert Kenton
Jeffrey Micko
Karen Morvay
Vanessa Reymers
Miguel Silva

Groundwater Monitoring

Behzad Ahmadi
Randy Behrens
Tracy Hemmeter
Luis Jaimes
Mark Merritt
Lauren Moll
Joseph Montenero
Vanessa Reymers
Groundwater Quality Management

Behzad Ahmadi
Randy Behrens
Frances Brewster
Ellen Fostersmith
Tracy Hemmeter
Seena Hoose
Luis Jaimes
Roger Pierno

Summary

Vanessa Reymers

The authors would like to extend a special thanks to William G. Molnar for his support, assistance, and guidance on this project.

Special acknowledgment is also given to the following people for their technical contributions, support, and feedback: James Crowley, Michael Duffy, Nai Hsueh, Tom Iwamura, Karen Kianpour, Carol Nigh, Sandy Oblonsky, and Sue Tippets.
TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 1

Chapter 1 .. 4

INTRODUCTION .. 4
 - Purpose .. 4
 - Background ... 4
 - Report Contents ... 5

Chapter 2 .. 6

BACKGROUND .. 6
 - Geography ... 6
 - History of the County’s Groundwater ... 7
 - District History .. 7
 - District Board of Directors ... 9
 - District System ... 9
 - Current Groundwater Conditions ... 12

Chapter 3 .. 16

GROUNDWATER SUPPLY MANAGEMENT ... 16
 - GROUNDWATER RECHARGE ... 16
 - Program Objective ... 16
 - Background ... 16
 - Current Status ... 16
 - Future Direction ... 18
 - TREATED GROUNDWATER RECHARGE/REINJECTION PROGRAM .. 18
 - Program Objective ... 18
 - Background ... 18
 - Current Status ... 19
 - Future Direction ... 19
 - WATER USE EFFICIENCY PROGRAMS ... 19
 - Recycled Water ... 19
 - Program Objective .. 19
 - Background ... 20
 - Current Status ... 20
 - Future Direction .. 20
 - Water Conservation Programs ... 21
 - Program Objective .. 21
 - Background ... 21
 - Current Status ... 22
 - Future Direction .. 23
 - Agricultural Water Efficiency .. 23
 - Program Objective .. 23
 - Background ... 23
 - Current Status ... 24
 - Future Direction .. 24
 - INTEGRATED WATER RESOURCES PLAN .. 25
 - Program Objective ... 25
 - Background ... 25
 - Current Status ... 26
 - Future Direction ... 27
 - Additional Groundwater Supply Management Activities .. 27
Groundwater Modeling
- Operational Storage Capacity Analysis 27
- Subsidence Modeling 28

Chapter 4

Groundwater Monitoring Programs

Groundwater Quality Monitoring
- Program Objective 29
- Background 29
- Current Status 29
- Future Direction 31

Groundwater Elevation Monitoring
- Program Objective 32
- Background 32
- Current Status 32
- Future Direction 32

Groundwater Extraction Monitoring
- Program Objective 34
- Background 34
- Current Status 34
- Future Direction 36

Land Subsidence Monitoring
- Program Objective 36
- Background 36
- Current Status 37
- Future Direction 38

Chapter 5

Groundwater Quality Management Programs

Nitrate Management
- Program Objective 39
- Background 39
- Current Status 42
- Future Direction 43

Saltwater Intrusion Prevention
- Program Objective 43
- Background 44
- Current Status 46
- Future Direction 48

Well Construction/DeSTRUCTION Programs
- Well Ordinance 48
- Program Objective 48
- Background 49
- Current Status 49
- Future Direction 50

Dry Well Program
- Program Objective 50
- Background 50
- Current Status 51
- Future Direction 51

Abandoned Water Well Destruction Assistance
- Program Objective 51
- Background 51
- Current Status 52
- Future Direction 53
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELLHEAD PROTECTION</td>
<td>53</td>
</tr>
<tr>
<td>Program Objective</td>
<td>53</td>
</tr>
<tr>
<td>Background</td>
<td>53</td>
</tr>
<tr>
<td>Current Status</td>
<td>53</td>
</tr>
<tr>
<td>Future Direction</td>
<td>55</td>
</tr>
<tr>
<td>LEAKING UNDERGROUND STORAGE TANK OVERSIGHT</td>
<td>55</td>
</tr>
<tr>
<td>Program Objective</td>
<td>55</td>
</tr>
<tr>
<td>Background</td>
<td>55</td>
</tr>
<tr>
<td>Current Status</td>
<td>57</td>
</tr>
<tr>
<td>Future Direction</td>
<td>58</td>
</tr>
<tr>
<td>TOXICS CLEANUP</td>
<td>59</td>
</tr>
<tr>
<td>Program Objective</td>
<td>59</td>
</tr>
<tr>
<td>Background</td>
<td>59</td>
</tr>
<tr>
<td>Current Status</td>
<td>59</td>
</tr>
<tr>
<td>Future Direction</td>
<td>60</td>
</tr>
<tr>
<td>LAND USE AND DEVELOPMENT REVIEW</td>
<td>60</td>
</tr>
<tr>
<td>Program Objective</td>
<td>60</td>
</tr>
<tr>
<td>Background</td>
<td>60</td>
</tr>
<tr>
<td>Current Status</td>
<td>60</td>
</tr>
<tr>
<td>Future Direction</td>
<td>61</td>
</tr>
<tr>
<td>Additional Groundwater Quality Management Activities</td>
<td>61</td>
</tr>
<tr>
<td>Groundwater Guardian Affiliate</td>
<td>61</td>
</tr>
<tr>
<td>Comprehensive Reservoir Watershed Management</td>
<td>62</td>
</tr>
<tr>
<td>Watershed Management Initiative</td>
<td>62</td>
</tr>
<tr>
<td>Non-Point Source Pollution Control</td>
<td>62</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>63</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>63</td>
</tr>
<tr>
<td>Groundwater Supply Management</td>
<td>63</td>
</tr>
<tr>
<td>Groundwater Monitoring</td>
<td>63</td>
</tr>
<tr>
<td>Groundwater Quality Management</td>
<td>64</td>
</tr>
<tr>
<td>Recommendations</td>
<td>64</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>67</td>
</tr>
</tbody>
</table>
ACRONYMS USED

af – acre-feet
BMP – Best Management Practices
CEQA – California Environmental Quality Act
CIMIS – California Irrigation Management Information System
CVP – Central Valley Project
DEIR – Draft Environmental Impact Report
DRASTIC – Depth to water table, net Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, and hydraulic Conductivity
DWR – Department of Water Resources
DWSAP – Drinking Water Source Assessment and Protection
EIR – Environmental Impact Report
EPA – Environmental Protection Agency
GIS – Geographic Information Systems
InSAR – Interferometric Synthetic Aperture Radar
IWRP – Integrated Water Resources Plan
LUSTOP – Leaking Underground Storage Tank Oversight Program
MCL – Maximum Contaminant Level
MOU – Memorandum of Understanding
MTBE – Methyl Tert Butyl Ether
NPDES – National Pollution Discharge Elimination System
NTU – Nephelometric Turbidity Unit
PCB - Polychlorinated biphenyl
RWQCB – Regional Water Quality Control Board
SBA – South Bay Aqueduct
SBWRP – South Bay Water Recycling Program
SCRWA – South County Regional Wastewater Authority
SCVWCD – Santa Clara Valley Water Conservation District
SCVWD – Santa Clara Valley Water District
SWRCB – State Water Resources Control Board
USGS – United States Geological Survey
UST – Underground Storage Tank
VOC – Volatile Organic Compound
WHP – Wellhead Protection Program
WMI – Watershed Management Initiative
WTP – Water Treatment Plant
EXECUTIVE SUMMARY

The Santa Clara Valley Water District (District) has managed the groundwater basin in Santa Clara County (County) since the early 1930s and is nationally recognized as a leader in groundwater management. The District works in conjunction with local retailers, the Regional Water Quality Control Board, and other agencies to ensure a safe and healthy supply of groundwater. In 2000, the groundwater basin supplied nearly half of the 390,000 acre-feet used in the County.

The District is the groundwater management agency in Santa Clara County as authorized by the California legislature under the Santa Clara Valley Water District Act (District Act), California Water Code Appendix, Chapter 60. Since its creation, the District has worked to minimize subsidence and protect the groundwater resources of the County under the direction of the District Act. As stated in the District Act, the District’s objectives related to groundwater management are to recharge the groundwater basin, conserve water, increase water supply, and to prevent waste or diminution of the District's water supply.

The mission of the District is a healthy, safe, and enhanced quality of living in Santa Clara County through the comprehensive management of water resources in a practical, cost-effective, and environmentally-sensitive manner. In the Global Governance Commitment adopted by the District Board of Directors, it is stated that the conjunctive management of the groundwater basins is an integral part of the District’s comprehensive water supply management program.

The District has always effectively managed the groundwater basin to fulfill the objectives of the District Act and its mission. The goal of these groundwater management efforts has been, and continues to be, to ensure that groundwater resources are sustained and protected.

The Groundwater Management Plan formally documents the District’s groundwater management goal and describes programs in place that are designed to meet that goal. The following programs are documented in the plan:

- Groundwater supply management programs that replenish the groundwater basin, sustain the basin’s water supplies, help to mitigate groundwater overdraft, and sustain storage reserves for use during dry periods.

- Groundwater monitoring programs that provide data to assist the District in evaluating and managing the groundwater basin.

- Groundwater quality management programs that identify and evaluate threats to groundwater quality and prevent or mitigate contamination associated with those threats.

This plan serves as the first step toward a more formal and integrated approach to the management of groundwater programs, and to the management of the basin overall. The
Executive Summary

various groundwater management programs and activities described in this document demonstrate that the District is proactive and effective in protecting the County’s groundwater resources.

Recommendations

The groundwater management programs described in the Groundwater Management Plan were developed and implemented before the Board of Directors adopted the Ends Policies in 1999, and were therefore not driven by these formally documented ends. As the District is now guided by these policies, we need to ensure that the outcomes of our groundwater management programs match those of the Ends Policies. In addition, we need to ensure that existing programs are integrated and effective in terms of achieving the District’s groundwater management goal.

Although the District manages the basin effectively, there is room for improvement of the groundwater management programs in terms of meeting these outcomes. Specific areas where further analysis is recommended include:

1. **Coordination between the Groundwater Management Plan and the Integrated Water Resources Plan (IWRP)** – As the District’s water supply planning document through year 2040, the IWRP has identified the operation of the groundwater basin as a critical component to help the District respond to changing water supply and demand conditions. Planning and analysis efforts for future updates of the Groundwater Management Plan and the IWRP need to be integrated in order to provide a coordinated and comprehensive water supply plan for Santa Clara County.

2. **Integration of groundwater management programs and activities** – Individual groundwater management programs tend to be implemented almost independently of other programs. A more integrated approach to the management of these programs, and to the management of the basin overall needs to be developed. Integration of these programs and improved conjunctive use strategies will result in more effective basin management.

3. **Optimization of recharge operations** – As artificial recharge is critical to sustaining groundwater resources, an analysis of the most effective amount, location, and timing of recharge should be conducted.

4. **Improved understanding of the groundwater basin** – In general, the existing groundwater management programs seem to focus on managing the basin to meet demands and protecting the basin from contamination and the threat of contamination. However, improving the District’s understanding of the complexity of the groundwater basin is critical to improved groundwater management. The more we know about the basin, the better we can analyze the impact of different groundwater scenarios and management alternatives.

5. **Effective coordination and communication with internal and external agencies** – Improved communication and coordination will lead to improved groundwater
management programs. Increased sharing of ideas, knowledge, and technical expertise among people involved with groundwater at the District will result in increased knowledge, well-coordinated and efficient work, and well-informed analyses and conclusions. Improved coordination with external agencies, such as retailers and state and federal organizations, will result in improved knowledge of customer needs and increased awareness of District activities.

A detailed analysis of these areas and of all groundwater programs as they relate to the Ends Policies and the groundwater management goal is recommended. District staff have already begun to address some of these issues, which will be fully discussed in the first update to the Groundwater Management Plan. The update, which is scheduled for 2002, will fully address the issues above and the overall management of the basin by presenting a formal groundwater management strategy. The update will evaluate each groundwater program’s contribution and effectiveness in terms of the groundwater management goal and outcomes directed by the Ends Policies. If there is no direct connection between the Ends Policies and a specific program, that program’s contribution to other linked programs will be analyzed. The update will include recommendations for changes to existing programs or for the development of new programs, standards, or ordinances. The update will also develop an integrated approach for the management of groundwater programs, and for the management of the groundwater basin in general.

Groundwater is critical to the water supply needs of Santa Clara County. Therefore, it is of the utmost importance that the District continues the progress begun with this Groundwater Management Plan. Increased demands and the possibility of reduced imported water in the future make effective and efficient management of the groundwater basin essential. The Groundwater Management Plan and future updates will identify how the management of the groundwater basin can be improved, thereby ensuring that groundwater resources will continue to be sustained and protected.
Chapter 1

INTRODUCTION

The Santa Clara Valley Water District (District) has managed the groundwater basin in Santa Clara County (County) since the early 1930s and is nationally recognized as a leader in groundwater management. Effective management of the groundwater basin is essential, as the groundwater basin provides nearly half of the County’s overall water supply. Since its creation, the District has implemented numerous groundwater management programs and activities to manage the basin and to ensure a safe and healthy supply of groundwater.

Purpose

The purpose of this Groundwater Management Plan is to describe existing groundwater management programs and to formally document the District’s groundwater management goal of ensuring that groundwater resources are sustained and protected. The following groundwater management programs are documented in this plan:

- Groundwater supply management programs that replenish the groundwater basin, sustain the basin’s water supplies, help to mitigate groundwater overdraft, and sustain storage reserves for use during dry periods.

- Groundwater monitoring programs that provide data to assist the District in evaluating and managing the groundwater basin.

- Groundwater quality management programs that identify and evaluate threats to groundwater quality and prevent or mitigate contamination associated with those threats.

Background

The District is the groundwater management agency in Santa Clara County as authorized by the California legislature under the Santa Clara Valley Water District Act (District Act), California Water Code Appendix, Chapter 60. Since its creation, the District has worked to minimize subsidence and protect the groundwater resources of the County under the direction of the District Act. As stated in the District Act, the District’s objectives related to groundwater management are to recharge the groundwater basin, conserve water, increase water supply, and to prevent waste or diminution of the District’s water supply. The District Act also provides the District with the authority to levy groundwater user fees and to use those revenues to manage the County’s groundwater resources.

The mission of the District is a healthy, safe, and enhanced quality of living in Santa Clara County through the comprehensive management of water resources in a practical, cost-effective, and environmentally-sensitive manner. As part of the District’s Global Governance Commitment adopted by the Board of Directors, “the District will provide a healthy, clean, reliable, and affordable water supply that meets or exceeds all applicable water quality regulatory standards in a cost-effective manner. Utilizing a variety of water supply sources and strategies, the District will pursue a comprehensive water...
management program both within the county and statewide that reflects its commitment to public health and environmental stewardship.” The policy also states that the conjunctive management of the groundwater basins to be an integral part of the District’s comprehensive water supply management program.

The District has always effectively managed the groundwater basin to fulfill the objectives of the District Act and its mission. The goal of these efforts has been, and continues to be, to sustain and protect groundwater resources.

This Groundwater Management Plan is the District's first step toward a more formal and integrated approach to groundwater management. This Groundwater Management Plan describes existing groundwater management programs and formally documents the District’s groundwater management goal, which is to ensure that groundwater resources are sustained and protected.

Report Contents

The structure of the Groundwater Management Plan is outlined below. Chapters 3 through 5, which pertain to specific groundwater management programs, are organized to provide program objectives, related background information, the current status of the program, and information on the future direction of each program.

- Chapter 1 (this Introduction)

- Chapter 2 describes the geography and geology of the County as well as the history of local groundwater use. The chapter also describes the development of District facilities, and explains the various components of the existing water conservation and distribution system. A brief discussion on current groundwater conditions is also presented.

- Chapter 3 describes District groundwater supply management programs that replenish the groundwater basin, sustain the basin’s supplies, and/or help in mitigating groundwater overdraft. In addition, the chapter summarizes the role of groundwater in the District’s overall water supply outlook, and describes water use efficiency programs for groundwater users.

- Chapter 4 describes groundwater monitoring programs that provide data to assist the District in evaluating groundwater basin management.

- Chapter 5 describes groundwater quality management programs that evaluate groundwater quality and protect the groundwater from contamination and the threat of contamination.

- Chapter 6 summarizes existing groundwater management programs and activities designed to sustain and protect groundwater resources and provides recommendations for future work.
Chapter 2
BACKGROUND

This chapter describes the study area as well as the history of local groundwater use and the development of District facilities. Various components of the District’s existing water conservation and distribution system are also described. A brief discussion on current groundwater conditions is also presented.

Geography
Santa Clara County is located at the southern tip of the San Francisco Bay. It encompasses approximately 1,300 square miles, making it the largest of the nine Bay Area counties. The County contributes about one fourth of the Bay Area’s total population and more than a quarter of all Bay Area jobs.

Figure 2-1
Location of Santa Clara County

The County boasts a combination of physical attractiveness, economic diversity, and numerous natural amenities. Major topographical features include the Santa Clara Valley, the Diablo Range to the east, and Santa Cruz Mountains to the west. The Baylands lie in the northwestern part of the County, adjacent to the waters of the southern San Francisco Bay.
History of the County’s Groundwater

Water has played an important part in the development of Santa Clara County since the arrival of the Spaniards in 1776. Unlike the indigenous peoples, who for thousands of years depended upon the availability of wild food, the Spaniards cultivated food crops and irrigated with surface water. Population growth and the United States’ conquest of the area in 1846 increased the demand for these crops, which forced the use of the groundwater basin. Groundwater was drawn to the surface by windmill pumps or flowed up under artesian conditions. The first well was drilled in the early 1850s in San Jose.

By 1865, there were close to 500 artesian wells in the valley and already signs of potential misuse of groundwater supplies. In the valley’s newspapers a series of editorials and letters appeared which complained of farmers and others who left their wells uncapped, and blamed them for a water shortage and erosion damage to the lowlands.

As a result of several dry years in the late 1890s, more and more wells were sunk. Dry winters in the early 1900s were accompanied by a growing demand for the County’s fruits and vegetables, which were irrigated with groundwater. This trend of increased irrigation and well drilling continued until 1915. During this period, less water replenished the groundwater basin than was taken out, causing groundwater levels to drop rapidly.

In 1913 a group of farmers asked the federal government for relief from the increased cost of pumping that resulted from a lower groundwater table. The farmers formed an irrigation district to investigate possible reservoir sites; however, the following year was wet and no action was taken. It was not until 1919 that the Farm Owners and Operators Association presented a resolution to the County Board of Supervisors expressing their strong opposition to the waste resulting from the use of artesian wells, and again raised the issue of building dams to supplement existing water supplies. By that year subsidence of 0.4 ft had occurred in San Jose. Between 1912 and 1932 subsidence ranged from 0.35 ft in Palo Alto to 3.66 ft in San Jose.

In 1921, a report was presented to the Santa Clara Valley Water Conservation Committee showing that far more water was being pumped from the ground than nature could replace. The committee planned to form a water district that differed from others in the state by having a provision for groundwater recharge. Their effort to form the water district failed, but they were able to implement several water recharge and conservation programs. It was not until 1929 that the County’s voters approved the Santa Clara Valley Water Conservation District (SCVWCD), with the initial mission of stopping groundwater overdraft and ground surface subsidence.

District History

The SCVWCD was the forerunner of today’s District, which was formed through the consolidation and annexation of other flood control and water districts within Santa Clara County. By 1935, the District had completed the construction of Almaden, Calero, Guadalupe, Stevens Creek, and Vasona dams to impound winter waters for recharge into percolation facilities during the summer. Later dams completed include Coyote in 1936, Anderson in 1950 and Lexington in 1952. The Gavilan Water District in the southern
portion of the County constructed Chesbro Dam in 1955 and Uvas Dam in 1957. These dams enabled the District to capture surface water runoff and release it for groundwater recharge.

The late 1930s to 1947 marked a period of recovery in groundwater levels that reduced subsidence. In 1947 conditions became dry, groundwater levels declined rapidly and subsidence resumed. In 1950 almost all of the County’s water requirements were met by water extracted from the groundwater basin. This resulted in an all-time low water level in the northern subbasin.

In 1952, the first imported water was delivered by the water retailers in northern Santa Clara County through the Hetch-Hetchy southern aqueduct. By 1960, the population of the County had doubled from that of 1950. To supply this growth, groundwater pumping increased and groundwater levels continued to decline. By the early 1960s, it was evident that the combination of Hetch-Hetchy and local water supplies could not meet the area’s water demands, so the District contracted with the state to receive an entitlement of 100,000 acre-feet (af) per year through the South Bay Aqueduct (SBA).

The SBA supply could not be fully utilized for recharge in the groundwater basin. Hence, to supplement the basin, the District constructed its first water treatment plant (WTP), Rinconada. In 1967, the District started delivering treated surface water to North County residents (North County refers to the Santa Clara Valley Subbasin), thus reducing the need for pumping. This led to a recovery of groundwater levels and reduced the rate of subsidence as well.

From 1960 to 1970 the County’s population nearly doubled yet again. The semiconductor and computer manufacturing industries contributed to almost 34 percent of the job growth between 1960 and 1970. Population growth and economic diversity seemed especially important to Santa Clara County, which had been predominantly agricultural. This transformation was not without its problems. In the early 1980s a major underground tank storing a solvent for a manufacturing process in south San Jose was discovered to be leaking and the District’s attention focused on water quality of the groundwater basin.

The growth and prosperity of the County continued, and jobs grew 39 percent between 1970 and 1980. In 1974, Penitencia (the District’s second WTP) started delivering treated water. Groundwater pumping accounted for about half of the total water use by the mid-1980s. The rate of subsidence was reduced to about 0.01 ft/year compared to 1 ft/year in 1961. To provide a reliable source of supply the District contracted with the federal government for the delivery of an entitlement of 152,500 af per year of imported water from the Central Valley Project (CVP) through the San Felipe Project. The first delivery of San Felipe water took place in 1987, but it was not until 1989 that the District’s Santa Teresa WTP was began operating to fully utilize this additional source of imported supply. Since the 1980s, the population of Santa Clara County has continued to increase, and the change in land use toward urbanization has continued.
District Board of Directors
The District is governed by a seven-member Board of Directors. Five of the members are elected, one from each of the five County supervisorial districts, and the remaining two directors are appointed by the Santa Clara County Board of Supervisors to represent the County at large. The directors serve overlapping four-year terms.

The Board establishes policy on the District's mission, goals, and operations and represents the general public in deciding issues related to water supply and flood control. The Board also has the authority to adopt ordinances that have the force of law within the District. The Board reviews staff recommendations and decides which policies should be implemented in light of the District's mission and goals. The Board also monitors the implementation of its policies, and supervises management to see that work is accomplished on time and efficiently.

The Board of Directors holds biweekly public meetings, at which the public is given the opportunity to express opinions or voice concerns. In addition, the public can participate in the annual process of groundwater rate setting through public hearings.

The Board of Directors identifies the conjunctive management of the groundwater basins to maximize water supply reliability as an integral part of the District’s commitment to a comprehensive water management program.

District System
As a water resource management agency for the entire County, the District provides a reliable supply of high-quality water to 13 private and public water retailers serving more than 1.7 million residents, and to private well owners who rely on groundwater.

The District operates and maintains a Countywide conservation and distribution system to convey raw water for groundwater recharge and treated water for wholesale to private and public retailers. The components of this distribution system are described in detail below.

Reservoirs
Local runoff is captured in reservoirs within the County with a combined capacity of about 169,000 af. The stored water is released for beneficial use at a later time. The District’s reservoirs are described in Table 2-1 and are shown in Figure 2-2.

Treatment Plants
The District also operates three water treatment plants (WTPs): Rinconada, Penitencia, and Santa Teresa. These facilities are all connected by five major raw water conduits, which also connect the two imported raw water sources from the State Water Project (SWP) and the CVP. Two pumping plants (Coyote and Vasona) provide the lifts required for conveyance during peak usage.
Table 2-1

District Reservoirs

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Capacity (af)</th>
<th>Year Completed</th>
<th>Surface Area (ac)</th>
<th>Dam Height (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almaden</td>
<td>1,586</td>
<td>1935</td>
<td>59</td>
<td>108</td>
</tr>
<tr>
<td>Anderson</td>
<td>89,073</td>
<td>1950</td>
<td>1,245</td>
<td>240</td>
</tr>
<tr>
<td>Calero</td>
<td>10,050</td>
<td>1935</td>
<td>347</td>
<td>98</td>
</tr>
<tr>
<td>Chesbro</td>
<td>8,952</td>
<td>1955</td>
<td>265</td>
<td>95</td>
</tr>
<tr>
<td>Coyote</td>
<td>22,925</td>
<td>1936</td>
<td>648</td>
<td>138</td>
</tr>
<tr>
<td>Guadalupe</td>
<td>3,228</td>
<td>1935</td>
<td>79</td>
<td>129</td>
</tr>
<tr>
<td>Lexington</td>
<td>19,834</td>
<td>1952</td>
<td>475</td>
<td>195</td>
</tr>
<tr>
<td>Stevens Creek</td>
<td>3,465</td>
<td>1935</td>
<td>91</td>
<td>129</td>
</tr>
<tr>
<td>Uvas</td>
<td>9,935</td>
<td>1957</td>
<td>286</td>
<td>105</td>
</tr>
<tr>
<td>Vasona</td>
<td>400</td>
<td>1935</td>
<td>57</td>
<td>30</td>
</tr>
</tbody>
</table>

Figure 2-2

District Reservoir Locations
Recharge Facilities
The Districts operates and maintains 18 major recharge systems, which consist of a combination of off-stream and in-stream facilities. These systems have a combined pond surface recharge area of more than 390 acres, and contain over 30 local creeks for artificial in-stream recharge to replenish the groundwater basin. The total annual average recharge capacity of these systems is 157,200 af.

Groundwater Basins
The groundwater basin is divided into three interconnected subbasins that transmit, filter, and store water. These subbasins are portrayed in Figure 2-3. The Santa Clara Valley Subbasin in the northern part of the County extends from Coyote Narrows at Metcalf road to the County’s northern boundary. The Diablo Range bounds it on the east and the Santa Cruz Mountains on the west. These two ranges converge at the Coyote Narrows to form the southern limits of the subbasin. The Santa Clara Valley Subbasin is approximately 22 miles long and 15 miles wide, with a surface area of 225 square miles. A confined zone within the northern areas of the subbasin is overlaid with a series of clay layers resulting in a low permeability zone. The southern area is the unconfined zone, or forebay, where the clay layer does not restrict recharge.

The Coyote Subbasin extends from Metcalf Road south to Cochran Road, where it joins the Llagas Subbasin at a groundwater divide. The Coyote Subbasin is approximately 7 miles long and 2 miles wide and has a surface area of approximately 15 square miles. The subbasin is generally unconfined and has no thick clay layers. This subbasin generally drains into the Santa Clara Valley Subbasin.

The Llagas Subbasin extends from Cochran Road, near Morgan Hill, south to the County’s southern boundary. It is connected to the Bolsa Subbasin of the Hollister Basin and bounded on the south by the Pajaro River (the Santa Clara - San Benito County line). The Llagas Subbasin is approximately 15 miles long, 3 miles wide along its northern boundary, and 6 miles wide along the Pajaro River. A series of interbedded clay layers, which extends north from the Pajaro River, divides this subbasin into confined and forebay zones.

The three subbasins serve multiple functions. They transmit water through the gravelly alluvial fans of streams into the deeper confined aquifer of the central part of the valley. They filter water, making it suitable for drinking and for municipal, industrial, and agricultural uses. They also have vast storage capacity, together supplying as much as half of the annual water needs of the County. In 2000, the groundwater basin supplied 165,000 acre-feet of the total water use of 390,000 acre-feet.
Background

Current Groundwater Conditions
Groundwater conditions throughout the County are generally very good, as District efforts to prevent groundwater basin overdraft, curb land subsidence, and protect water quality have been largely successful. Groundwater elevations are generally recovered from overdraft conditions throughout the basin, inelastic land subsidence has been curtailed, and groundwater quality supports beneficial uses. The District evaluates current groundwater conditions based on the results of its groundwater monitoring programs, which are described in Chapter 4 of this plan.

Groundwater Elevations
Groundwater elevations are affected by natural and artificial recharge and groundwater extraction, and are an indicator of how much groundwater is in storage at a particular time. Both low and high elevations can cause severe, adverse conditions. Low groundwater levels can lead to land subsidence and high water levels can lead to nuisance conditions for below ground structures.

Figure 2-4 shows groundwater elevations in the San Jose Index Well in the Santa Clara Valley Subbasin. While groundwater elevations in the well are not indicative of actual groundwater elevations throughout the County, they demonstrate relative changes in groundwater levels.
Groundwater Elevations in San Jose Index Well

Figure 2-4

Land Subsidence
Land subsidence occurs in the Santa Clara Valley when the fluid pressure in the pores of aquifer systems is reduced significantly by overpumping, resulting in the compression of clay materials and the sinking of the land surface. Historically, the Santa Clara Valley Subbasin has experienced as much as 13 feet of inelastic, or nonrecoverable, land subsidence that necessitated the construction of additional dikes, levees, and flood control facilities to protect properties from flooding. The costs associated with inelastic land subsidence are high, as it can lead to saltwater intrusion that degrades groundwater quality and flooding that damages buildings and infrastructure. However, imported water from the State Water Project and Central Valley Project has increased District water supplies, reducing the demand on the groundwater basin, and providing water for the recharge of the basin. As a result, the rate of inelastic land subsidence has been curtailed to less than 0.01 feet per year.

Groundwater Quality
Natural interactions between water, the atmosphere, rock minerals, and surface water control groundwater quality. Anthropogenic (man-made) compounds released into the environment, such as nitrogen-based fertilizer, solvents, and fuel products, can also affect groundwater quality. Groundwater quality in the Santa Clara Valley Subbasin is generally high. Drinking water standards are met at public water supply wells without the use of treatment methods.
A few water quality problems have been detected. High mineral salt concentrations have been identified in the upper aquifer zone along San Francisco Bay, the lower aquifer zone underlying Palo Alto, and the southeastern portion of the forebay area of the Santa Clara Valley Subbasin. Nitrate concentrations in the South County (Coyote and Llagas Subbasins) are elevated and high nitrate concentrations are sporadically observed in the Santa Clara Valley Subbasin. Lastly, even though Santa Clara County is home to a large number of Superfund sites, there are few groundwater supply impacts from the chemicals from these sites; volatile organic compounds (VOCs) are intermittently detected at trace concentrations in public water supply wells. In four wells, such contamination has been severe enough to cause the wells to be destroyed. Overall, the District's groundwater protection programs, including its well permitting, well destruction, and leaking underground storage tank programs, have been effective in protecting the groundwater basin from contamination.

Water quality data for common inorganic compounds during the period from 1997 through 2000 are summarized in Table 2-2. The typical concentration ranges were computed using standard statistical methods. Organic compounds were nondetectable in almost all wells and below drinking water standards in all wells. Data for organic compounds, including MTBE, solvents, and pesticides is not shown in Table 2-2 due to the large number of compounds.
Table 2-2
Summary of Santa Clara County Groundwater Data (1997-2000) and Water Quality Objectives

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Santa Clara Valley Subbasin</th>
<th>Coyote Subbasin</th>
<th>Llagas Subbasin</th>
<th>Drinking Water Standard</th>
<th>Ag. Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Principal Aquifer Zone</td>
<td>Upper Aquifer Zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride (mg/l)</td>
<td>16 – 27</td>
<td>24 -52</td>
<td></td>
<td>500<sup>2</sup></td>
<td>355</td>
</tr>
<tr>
<td>Sulfate (mg/l)</td>
<td>32 - 65</td>
<td>32 -65</td>
<td></td>
<td>500<sup>2</sup></td>
<td>-</td>
</tr>
<tr>
<td>Nitrate (mg/l)</td>
<td>12 -38</td>
<td>44 -47</td>
<td></td>
<td>45<sup>2</sup></td>
<td>30</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/l)</td>
<td></td>
<td></td>
<td></td>
<td>1000<sup>2</sup></td>
<td>10,000</td>
</tr>
<tr>
<td>Sodium Adsorption Ratio</td>
<td>0.89 - 1.26</td>
<td>1.23 - 3.84</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Electrical Conductance (uS/cm at 25 C)</td>
<td>596 - 650</td>
<td>1090 – 1590</td>
<td>375 - 391</td>
<td>500 - 715</td>
<td>1600<sup>2</sup> 3000</td>
</tr>
<tr>
<td>Aluminum (ug/l)</td>
<td>6 - 18</td>
<td>23 – 97</td>
<td><5 - 86</td>
<td>5 -51</td>
<td>100<sup>2</sup> 20,000</td>
</tr>
<tr>
<td>Arsenic (ug/l)</td>
<td>0.7- 1.2</td>
<td>1.2 - 3.7</td>
<td><2</td>
<td><2</td>
<td>50<sup>2</sup> 500</td>
</tr>
<tr>
<td>Barium (ug/l)</td>
<td>141 - 161</td>
<td>60 – 220</td>
<td>71 - 130</td>
<td>99 - 180</td>
<td>100<sup>2</sup> -</td>
</tr>
<tr>
<td>Boron (ug/l)</td>
<td>115 - 150</td>
<td>200 – 523</td>
<td>81 - 119</td>
<td>82 -159</td>
<td>-</td>
</tr>
<tr>
<td>Cadmium (ug/l)</td>
<td><1</td>
<td><0.5</td>
<td>< 0.5</td>
<td><0.5</td>
<td>5<sup>2</sup> 500</td>
</tr>
<tr>
<td>Chromium (ug/l)</td>
<td>6 – 8</td>
<td>0.5 – 1.8</td>
<td>0.5 - 10</td>
<td>2 - 10</td>
<td>50<sup>2</sup> 1000</td>
</tr>
<tr>
<td>Copper (ug/l)</td>
<td>1.9 – 4.4</td>
<td>0.3 – 1</td>
<td>1<1 - 50</td>
<td>0.75 – 3.90</td>
<td>1000<sup>2</sup> -</td>
</tr>
<tr>
<td>Fluoride (mg/l)</td>
<td>0.13 – 0.16</td>
<td>0.15 – 0.3</td>
<td>0.12 – 0.21</td>
<td>0.12 – 0.17</td>
<td>1.8<sup>2</sup> 15</td>
</tr>
<tr>
<td>Iron (ug/l)</td>
<td>10 – 38</td>
<td>40 – 160</td>
<td>19 - 100</td>
<td>14 - 170</td>
<td>300<sup>2</sup> 20,000</td>
</tr>
<tr>
<td>Lead (ug/l)</td>
<td>0.2 – 1.1</td>
<td><0.5</td>
<td>< 2</td>
<td><2</td>
<td>50<sup>2</sup> 10,000</td>
</tr>
<tr>
<td>Manganese (ug/l)</td>
<td>.15 – 1.5</td>
<td>120 – 769</td>
<td><0.5 - 29</td>
<td>0.86 - 21</td>
<td>50<sup>2</sup> 10,000</td>
</tr>
<tr>
<td>Mercury (ug/l)</td>
<td><1</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td>2<sup>2</sup> -</td>
</tr>
<tr>
<td>Nickel (ug/l)</td>
<td>1.8 – 3.4</td>
<td>4 – 10</td>
<td>2<2 - 10</td>
<td><2 - 10</td>
<td>100<sup>2</sup> 2000</td>
</tr>
<tr>
<td>Selenium (ug/l)</td>
<td>2.5 – 3.8</td>
<td>0.4 – 2</td>
<td><2</td>
<td><2</td>
<td>50<sup>2</sup> 20</td>
</tr>
<tr>
<td>Silver (ug/l)</td>
<td><5</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td>100<sup>2</sup> -</td>
</tr>
<tr>
<td>Zinc (ug/l)</td>
<td>3 – 8</td>
<td>3 - 13</td>
<td><50</td>
<td>10 - 32</td>
<td>500<sup>2</sup> 10,000</td>
</tr>
</tbody>
</table>

^a For common inorganic water quality constituents
^b Maximum Contaminant Level as specified in Table 64431-A of Section 64431, Title 22 of the California Code of Regulations
^c Secondary Maximum Contaminant Level as specified in Table 64449-B of Section 64449, Title 22 of the California Code of Regulations
^d Typical range = approximate 95% Confidence Interval estimate of the true population median
^e Upper limit of secondary drinking water standard
^f Taken from the Water Quality Control Plan for the San Francisco Bay Basin, 1995 Regional Water Quality Control Boards
Chapter 3
GROUNDWATER SUPPLY MANAGEMENT

This chapter covers the District programs that relate to groundwater supply management. It describes the District’s groundwater recharge, treated groundwater recharge/reinjection, and water use efficiency programs. It also summarizes the role of the groundwater basin in terms of the District’s overall water supply plan, the Integrated Water Resources Plan (IWRP). Groundwater supply management programs support the District’s groundwater management goal by sustaining the basin’s groundwater supplies, mitigating groundwater overdraft, minimizing land subsidence, protecting recharge and pumping capabilities, and sustaining storage reserves for use during dry periods.

Future efforts in groundwater supply management will include strengthening the District’s groundwater recharge program so that the District makes the most effective use of its resources with regard to the amount, location, and timing of groundwater recharge.

GROUNDWATER RECHARGE

Program Objective
The objective of the Groundwater Recharge Program is to sustain groundwater supplies through the effective operation and maintenance of District recharge facilities.

Background
Groundwater recharge is categorized as either natural recharge or facility recharge. The District defines “natural” groundwater recharge to be any type of recharge not controlled by the District. Sources may include rainfall, net leakage from pipelines, seepage from surrounding hills, seepage into and out of the groundwater basin, and net irrigation return flows to the basin. Facility recharge consists of controlled and uncontrolled recharge through District facilities, which include about 90 miles of stream channel and 71 off-stream recharge ponds. Controlled recharge refers to the active and intentional recharge of the basin by releases from reservoirs or the distribution system. Uncontrolled recharge occurs through District facilities, such as creeks, but refers to recharge that would occur without any action on the part of the District. This includes natural recharge through streams as a result of rainfall and runoff. This section focuses exclusively on controlled and uncontrolled facility recharge.

Current Status
The District’s current recharge program is accomplished by releasing locally conserved water and imported water to District in-stream and off-stream recharge facilities.

In-stream Recharge
The controlled in-stream recharge accounts for approximately 45 percent of groundwater recharge through District facilities. In-stream recharge occurs along stream channels in the alluvial plain, upstream of the confined zone that eventually reaches the drinking water aquifer. The District can release flow for
recharge into 80 of the 90 miles of streams. Uncontrolled in-stream recharge accounts for approximately 20 percent of groundwater recharge.

Spreader dams have been a key component of the in-stream recharge program. These temporary or permanent dams are constructed within streambeds to impound water in the channels and increase recharge rates via percolation through stream banks. The use of spreader dams increases in-stream recharge capacity by about 15,000 af, or approximately ten percent. Spreader dams have been constructed at 60 or more sites since they were first employed in the 1920s.

Off-stream Recharge
The off-stream recharge accounts for approximately 35 percent of groundwater recharge through District facilities. The off-stream facilities include abandoned gravel pits and areas excavated specifically as recharge ponds. Ponds range in size from less than 1 acre to more than 20 acres. The District operates 71 off-stream ponds in 18 major recharge systems with a cumulative area of about 393 acres. Locally conserved and imported water is delivered to these ponds by the raw water distribution system.

Off-stream recharge facilities are generally operated in one of two modes: constant head mode or wet/dry cycle mode. The District most often uses the constant head mode, which involves filling the pond and maintaining inflow at a rate equal to the recharge rate of the pond. This operation is continued until the recharge rate of the pond has decreased to an unacceptable rate. In order to maintain high recharge rates, ponds are cleaned periodically. Pond cleaning is generally considered when the recharge rate has decreased by about 75 percent. The pond is then emptied and any sediment cleaned out. In some cases, the pond is emptied and allowed to dry out and the recharge operation is restarted without cleaning. However, this typically results in a slightly reduced recharge rate. The recharge rates of the District’s ponds generally range from 1 af/acre/day to about 2 af/acre/day, although some ponds have rates up to 5 af/acre/day.

In the constant head mode, algae and weed growth generally occurs. The algae growth varies according to sunlight, water temperature, nutrients and other factors. As the algae dies, it falls to the pond bottom, also contributing to a reduced recharge rate. The algae are generally controlled using chemical additives. Using deeper ponds can also reduce algae growth, as ponds in the range of 13 to 15 feet deep do not support algae growth as rapidly as shallower ponds.

Water Quality
High turbidity of incoming water results in a rapid decrease of recharge rates. In order to increase recharge pond efficiency, the District works to reduce turbidity levels with coagulants, simple mixing procedures, settling basins and skimming weirs. At most facilities, water with turbidity levels up to about 100 Nephelometric Turbidity Unit (NTU) can be treated effectively. Water with turbidity levels of less than 10 NTU is usually not treated. Each NTU represents
several pounds of fine-grained material per acre-foot of water. Allowable influent turbidity levels may depend on the availability of water.

Monitoring

Recharge facilities are monitored around the clock by operations center personnel using a computerized control system, and in the field by technicians. The raw water control system provides for remote operation of water distribution facilities and real-time system performance data. Operations technicians perform daily inspection of recharge facilities and record flows and water levels.

A periodic water balance is performed to reconcile all measured imported water, inflows, releases and changes in surface water storage. The results of this balance become the final accounting for distribution and facility processing. The data is used for water rights reporting, accounting for usage of federal water, for facility performance measurement purposes, and for the groundwater basin water budget.

Future Direction

Although spreader dams have traditionally been a key component of the in-stream recharge program, their use has been limited significantly because of more stringent permitting due to fish and wildlife concerns.

The District has completed the feasibility testing of a direct injection facility to increase recharge and has completed construction of a full-scale well. The injection well has a capacity of 750 af/year and will be supplied with water treated at the Rinconada WTP. The potential for additional direct injection facilities may be evaluated in the future.

TREATED GROUNDWATER RECHARGE/REINJECTION PROGRAM

Program Objective

The objective of the Treated Groundwater Recharge/Reinjection Program is to encourage the reuse or recharge of treated groundwater from contamination cleanup sites in order to enhance cleanup activities and protect the County’s groundwater resources.

Background

District Resolution 94-84 encourages the reuse or recharge of treated groundwater from groundwater contamination cleanup projects and provides a financial incentive program to qualifying cleanup project sponsors. Sponsors must document that all non-potable demands are satisfied to the maximum extent possible prior to injecting any water into the aquifer. All injected water must be recovered by the pump-and-treat cleanup activities at the site.

Each application is processed within 45 working days. Once an applicant has met the qualifying conditions and is accepted, a legal contract is prepared and signed by the District and the clean-up project sponsor. This contract details how the sponsor will
receive a financial incentive from the District. The sponsor is responsible for providing periodic updates on the amount and quality of water reinjected/recharged.

Current Status
The amount of this financial incentive is equivalent to the basic groundwater user rate. IBM (San Jose) is currently recharging between 900 and 1,000 af per year, and is the only approved sponsor currently injecting/recharging groundwater and receiving this financial incentive.

Future Direction
Any future applications will be evaluated rigorously with respect to overall groundwater basin management to ensure that the groundwater basin will not be adversely impacted.

WATER USE EFFICIENCY PROGRAMS
The District’s Water Use Efficiency Programs are designed to promote more effective use of the County’s water supplies. The District’s demand management measures are described in the Water Conservation and Agricultural Water Efficiency sections that follow the discussion of Recycled Water. The District’s commitment to increasing the use of recycled water within the County will also help the District to more effectively use the County’s water.

Recycled Water

Program Objective
The objective of the Recycled Water Program is to increase the use of recycled water, thereby promoting more effective use of the County’s water supplies. To meet this objective, the District is forming partnerships with the four sewage treatment plant operators in the County and is taking every opportunity to expand the distribution and use of tertiary treated recycled water for non-potable uses. Present efforts focus on planning for future uses in agriculture, industry, commercial irrigation, and indirect potable reuse. To meet the objective of increasing the use of recycled water, the District is:

- Partnering with and providing rebates to the South Bay Water Recycling Program (SBWRP) which includes the cities of San Jose, Santa Clara and Milpitas.

- Operating and expanding the South County Recycled Water System as the recycled water wholesaler in the area. Formal agreements with the recycled water producer, the South County Regional Wastewater Authority (SCRWA), and the recycled water retailer, the City of Gilroy, are in place.

- Providing the City of Sunnyvale a rebate on the recycled water delivered each year.

- Meeting with the City of Palo Alto and their stakeholder group to help plan for expanded future use of recycled water in the North County.
• Contracting a consultant to perform a feasibility study on Advanced Treated Recycled Water.

Background
The District has been involved in water recycling since the 1970s when it supported research in Palo Alto and partnered in the establishment of the South County distribution system in Gilroy. Since the early 1990s, the District has become involved in an ever-increasing role. Recycled water use in the County has grown from about 1,000 af in 1990 to over 6,000 af in the year 2000. To encourage the use of recycled water, in 1993 the District started providing rebates to agencies delivering recycled water.

The largest system for recycled water distribution is the South Bay Water Recycling Program, which has over 60 miles of distribution pipelines and serves over 300 customers. The District continues a partnership with the SBWRP in its planning effort for expansion. In 1999, the District formalized its partnership with the South County Regional Wastewater Authority and the cities of Gilroy and Morgan Hill to plan and operate the recycled water distribution system in South County. Since then, the District has begun construction on major pumping and reservoir facilities to modernize the system.

Current Status
The District is expanding its planning efforts and is continuing discussions with the SBWRP for expanding the use of recycled water. This will involve transporting recycled water south from the existing pipeline in south San Jose in order to supply agricultural and industrial customers that now use groundwater or untreated surface water. The City of San Jose, who administers the SBWRP, has installed several groundwater monitoring wells at the District’s request in order to monitor potential changes in groundwater quality as a result of the application of recycled water for irrigation.

The District continues to modernize and expand the South County Recycled Water System. Besides serving golf courses and parks, expansion of this system will involve delivering water to industrial and agricultural users. District staff has inventoried the volume of use and location of the largest groundwater and surface water users in the area and is beginning a marketing study for expansion of the system. The District is also working with the City of Gilroy to plan for the connection of new large water use developments to the system.

A project has been initiated to study the feasibility of installing a pilot plant for the advanced treatment of recycled water for use in agriculture, commercial irrigation, industry, and possibly for future streamflow augmentation and groundwater replenishment.

Future Direction
The future direction of the recycled water program is driven by District Board policy, which directs staff to increase recycled water use to 5% of total water use in the County by the year 2010 and to 10% of total use by the year 2020. To meet this goal, it is assumed that a countywide network of recycled water distribution systems will be
developed. The initial stage will provide for a major transmission main from the area of south San Jose in the SBWRP service area to the major commercial and agricultural customers in South County. Developing advanced treatment methods and facilities to provide recycled water of a higher quality standard than the present tertiary treatment will be required in order to meet the needs of some potential customers. Methods and facilities to blend recycled water with untreated surface water and with groundwater will also need to be developed in order to provide for peaking factors and the quality requirements of some customers. Additional research on the most effective method of advanced treatment and ways to develop more industrial use and onsite treatment of recycled water will be performed.

District efforts to expand recycled water use within Santa Clara County will be coordinated with the District's Integrated Water Resources Plan which will evaluate the various options for obtaining the additional water the County will require in future years. This effort will evaluate the comparative costs and benefits of recycled water, water conservation, water banking, and water transfers. District staff will work with partnering agencies to ensure that any potential uses of recycled water will not adversely impact the groundwater basin or recharge and extraction capabilities.

Water Conservation Programs

Program Objective
The objective of the Water Conservation Program is to promote more efficient use of the County’s water resources and to reduce the demands placed on the District’s water supplies. To meet this objective, the District has implemented a variety of programs designed to increase water use efficiency in the residential, commercial, industrial, and agricultural sectors, which all rely, in part, on extraction from the groundwater basin.

Background
The District's Water Conservation Program has been developed in large part to comply with the Best Management Practices (BMPs) commitments, defined in the 1991 Memorandum of Understanding (MOU) Regarding Urban Water Conservation in California. The program targets residential, commercial/industrial/institutional, and agricultural water use.

The District has promoted conservation of the County’s water supplies since its creation. However, a series of drought years between 1987 and 1992 prompted the District and local water retailers to significantly increase conservation efforts. The District enjoys a special cooperative partnership with the water retailers in regional implementation of the BMPs; several program elements were developed in partnership with the local water retailers. Water retailers have partnered with the District in marketing efforts for cooperative programs and in the distribution of water-saving devices such as showerheads and aerators.
Current Status
The Water Conservation Program has designed programs aimed specifically at residential, commercial, and agricultural users. Residential programs include:

- Water-Wise House Call Program designed to measure residential water use and provide recommendations for improved efficiency.
- Showerhead/Aerator Retrofit Distribution Program, which provides free showerheads and aerators to replace less efficient devices.
- Clothes Washer Rebate Program for the installation of high-efficiency washing machines.
- Landscape workshops focused on water efficient landscape and irrigation design.
- Ultra-Low-Flush Toilet (ULFT) Program (free or low-cost).
- Multi-Family Submeter Pilot Program aimed at reducing water use in multi-family dwellings.
- Education programs in English and Spanish, including the distribution of literature, promotion of water conservation at organized events, and the survey program.

District programs targeting water conservation in the commercial sector include:

- Irrigation Technical Assistance Program (ITAP) designed to help large landscape managers improve irrigation efficiency through free site evaluations.
- Commercial Clothes Washer Rebate Program, in conjunction with PG&E, San Jose/Santa Clara Water Pollution Control Plant, and the City of Santa Clara.
- Project WET (Water Efficient Technologies), which offers rebates to commercial and industrial customers for the reduction of water use and wastewater discharges (in conjunction with the City of San Jose).
- Ultra-Low-Flush Toilet Retrofit Program in conjunction with the San Jose/Santa Clara Water Pollution Control Plant.
- Irrigation Submeter Program to encourage better water management at large commercial sites.

The District has also implemented several programs to promote water use efficiency in the agricultural sector, which relies mainly on the groundwater basin for its water needs. These programs are discussed in the following section of this report.
In fiscal year 1999/2000, the District’s water conservation programs achieved an estimated water savings of over 24,000 af, which includes 10,000 af through water retailer participation.

Future Direction

Water conservation efforts are anticipated to reduce County water demands by approximately 30,000 af in 2001, and by almost 32,000 af in 2002. Future programs and projects being developed include:

- Water Use Efficiency Baseline Survey to provide specific information needed to tailor the District’s water use efficiency program to result in effective long-term water use efficiency, to evaluate the impacts of water efficiency measures, and further promote and implement Best Management Practices (BMPs).

- Expansion of the Water Efficient Technologies (WET) Program to the entire county.

- Landscape and Agricultural Area Measurement and Water Use Budgets.

Agricultural Water Efficiency

Program Objective

The objective of the Agricultural Water Efficiency Program is to promote, demonstrate and achieve water use efficiency in the agricultural sector, which relies on groundwater supplies for most of its water needs. To meet this objective the District has implemented the following program elements:

- Mobile Lab Program

- California Irrigation Management Information System (CIMIS) Program

- Outreach Program

Background

As required by the Central Valley Project Improvement Act, in 1994 the District adopted a Water Conservation Plan to comply with U.S. Bureau of Reclamation criteria. This plan commits the District to support various agricultural water management activities and to implement the urban BMPs discussed in the Water Conservation Programs section.

Among the agricultural water management activities outlined in the plan is a Mobile Irrigation Lab program. This program provides local farmers with on-site irrigation system evaluations and recommendations for efficiency improvement. The mobile lab is designed to help increase water distribution uniformity and on-farm irrigation and energy efficiencies for all types of irrigation systems. Proper distribution uniformity can result in lower water and energy bills and decreased fertilizer application. Managing nitrogen and irrigation input to more closely match actual crop needs can also reduce water and
energy bills; this approach reduces the potential for nitrate to leach into groundwater while maintaining or improving agricultural productivity.

California Irrigation Management Information System (CIMIS) is a related program that helps large-scale water users to develop water budgets for determining when to irrigate and how much water to apply. Created in 1982 through a joint effort of UC Davis and the Department of Water Resources (DWR), CIMIS is a network of more than 100 computerized weather stations across the state that collects, measures and analyzes all the climatological factors that influence irrigation. This information provides major irrigators daily data on the amount of water that evaporates from the soil and the amount used by grasses.

The District owns and supervises two CIMIS weather stations, one at the UC field station in downtown San Jose, and the other at Live Oak High School in Morgan Hill. Both of these stations, as well as others around the state, are connected to a central computer run by the DWR in Sacramento. The updated information from the District’s two stations is automatically downloaded and then provided to the public via a telephone hotline recording or the Internet.

An Outreach Program is an essential component of the agricultural efficiency programs. Outreach to the agricultural community includes public information dissemination, seminars or workshops, public presentations, newsletter articles and specific program materials.

Current Status

The District continues to implement the Mobile Lab Program, which provides on-farm irrigation evaluations, pump efficiency tests, nitrate field test demonstrations, and recommendations for efficient irrigation improvements. Approximately 30 sites participate in the program each year.

The District is currently assessing the potential need for an additional CIMIS station in the North County.

As part of the Outreach Program, significant work has been channeled into developing educational materials on the use of CIMIS in efficient irrigation scheduling. Presentations on the various program elements have been made to the District’s Agriculture Advisory Committee, Farm Bureau and grower associations. Articles and brochures have been developed for CIMIS and the mobile lab program. In addition, the staff from the District’s Water Use Efficiency and Groundwater Management Units have worked together to hold various workshops and seminars in the South County on irrigation and nutrient and pesticide management. All seminars have been well attended.

Future Direction

The future direction of the agricultural water efficiency programs includes the continuation and further development of the Mobile Lab Program. District staff will recommend continuation of the program as long as it demonstrates its cost-effectiveness.
The District is currently evaluating the feasibility of implementing a financial incentives program to complement the mobile lab.

A Monitoring and Evaluation Program is necessary to determine and assess the effectiveness of the various programs. The focus of the current monitoring effort has been the tracking of activity levels and program costs. To ensure that future water saving goals are achieved and urban and agricultural programs are successful, the District will need to enhance its existing monitoring program to more rigorously quantify actual water savings.

INTEGRATED WATER RESOURCES PLAN

Program Objective
The objective of the Integrated Water Resources Plan (IWRP) is to develop a long-term, flexible, comprehensive water supply plan for the County through year 2040 that incorporates community input and can respond to changing water supply and demand conditions.

Background
The District’s 1975 water supply master plan identified the Federal San Felipe Project as the best solution to meet future water demands. However, recent severe droughts, changing state and federal environmental and water quality regulations, and the variability and reliability of both local and imported supplies underscored the need for an updated, more flexible water supply planning process. In the early 1990s, District staff developed a water supply overview study and began to outline a process to update the 1975 master plan.

The overview study described the District’s water system and identified drinking water quality issues, the County’s water needs, existing water supplies, projected water supplies, potential water shortages, and other components for managing water supplies. The overview study also evaluated water supply alternatives and recommended a stakeholder process to help the District select the preferred alternative.

As a result of the recommendations from the water supply overview process and several workshops involving the Board and overview study project team, the District Board of Directors authorized staff to undertake the IWRP.

In March of 1996, the project team introduced the Board’s planning objectives for the IWRP evaluation of water supply strategies. These objectives were refined by stakeholders, including: the general public, representatives of business, community, environmental and agricultural groups, District technical staff, and officials of local municipalities and other water agencies. Stakeholders used these objectives to evaluate various water supply strategies and agree upon an IWRP Preferred Strategy.

The IWRP Preferred Strategy aims to maximize the District’s flexibility to meet actual water demands, whether they exceed or fall short of projections. It relies on water
banking, recycled water, demand management, and water transfers, plus “core elements” designed to ensure the validity of baseline planning assumptions, monitor or evaluate resource options, and help meet planning objectives. The Board approved the preferred strategy in December of 1996.

The groundwater basin is a critical component in the management of the County’s water supply. The basin treats, transmits, and stores water for the County. The management objective of the 1996 IWRP is to maintain the highest storage possible in the three interconnected subbasins (or to bank groundwater) without creating high groundwater problems. During dry periods when local and imported water supplies do not meet the County’s water needs, stored groundwater is used to make up the difference. However, the use of this storage has to be balanced with the potential occurrence of land subsidence.

Land subsidence has been a great concern in the valley. As much as thirteen feet of subsidence occurred in parts of the basin before subsidence was minimized through recharge activities and imported water deliveries. If subsidence were to recommence, the damage to infrastructure would be significant, as many levees, pipelines, and wells would need to be rebuilt. Therefore, the IWRP must balance the use of the groundwater basin with the avoidance of adverse impacts.

Current Status
The preferred strategy from the 1996 IWRP is being implemented. Action on several elements of the plan that has already taken place includes the following:

Water Banking
The District reached an agreement with Semitropic Storage District to bank up to 350,000 af in their storage facilities. The District currently has stored about 140,000 af in the water banking program.

Recycled Water
The District is working closely with the city of San Jose and Sunnyvale to develop and market recycled water in lieu of groundwater pumping for irrigation. Planning with South County Regional Wastewater Agency is also occurring (see section on Water Use Efficiency).

Demand Management
The Water Use Efficiency Unit has developed an aggressive program to minimize water use and provide assistance to irrigators to improve the efficiencies in their irrigation systems (see section on Water Use Efficiency).

Water Transfers
In 1999, the District entered into a multi-party water transfer agreement for an agricultural supply from a Central Valley Project (CVP) contractor. This transfer will make a small amount of dry year water available to the District during the next 20 years.
Core Elements

- In 1997, the District entered into a Reallocation Agreement that provides a reliability “floor” of 75 percent of contract quantity for the District’s Municipal and Industrial CVP supply, except for extreme years when CVP allocations are made on the basis of public health and safety.

- A study was recently conducted to determine the frequency of critical dry periods using a statistical approach that showed the preferred strategies are very robust although not perfect.

- The Operational Storage Capacity of the Santa Clara Valley Subbasin was evaluated and refined in 1999 (SCVWD, 1999) – see section on operational storage capacity.

Future Direction

An ongoing process of monitoring the baseline conditions and contingency action levels is being developed. Updates to the IWRP are scheduled for every 3 to 5 years. The District is currently developing the 2002 IWRP Update.

As the District’s water supply planning document through year 2040, the IWRP has identified the operation of the groundwater basin as a critical component to help the District respond to changing water supply and demand conditions. Planning and analysis efforts for future updates of the Groundwater Management Plan and the IWRP need to be integrated in order to provide a coordinated and comprehensive water supply plan for Santa Clara County.

Additional Groundwater Supply Management Activities

Groundwater Modeling

The District uses a three-dimensional groundwater flow model to estimate the short-and long-term yield of the Santa Clara Valley Subbasin and to evaluate groundwater management alternatives. Six layers are used to represent the subbasin, and changes in rainfall, recharge, and pumping are simulated. The model is used to simulate and predict groundwater levels under various scenarios, such as drought conditions, reduced imported water availability, or increased demand. The groundwater model also allows the District to evaluate the operational storage capacity (discussed below) in the Santa Clara Valley Subbasin.

In the future, a three-dimensional flow model similar to the one used in the Santa Clara Valley Subbasin will be developed for the Coyote and Llagas Subbasins, enabling the District to simulate groundwater conditions throughout the County.

Operational Storage Capacity Analysis

The operational storage capacity is an estimate of the storage capacity of the groundwater basin as a result of District operation. Operational storage capacity is generally less than the total storage capacity of the basin, as it accounts for operational constraints such as
available pumping capacity and the avoidance of land subsidence or high groundwater levels. Identifying a reasonable range for the amount of groundwater that can be safely stored in wet years and withdrawn in drier years is critical to proper management of the groundwater basin.

The operational storage capacity of the Santa Clara Valley Subbasin was evaluated (SCVWD, 1999) using the groundwater flow model and historical hydrology, which included two periods of severe drought. The key findings of the analysis were that:

• The operational storage capacity of the Santa Clara Valley Subbasin is estimated to be 350,000 af.

• The rate of withdrawal from the basin is a controlling function and pumping should not exceed 200,000 af in any one year.

• The western portion of the subbasin is operationally sensitive which requires the Rinconada Water Treatment Plant to receive the highest priority when supplies become limited.

In 2001, an analysis of the operational storage capacity for the Coyote and Llagas Subbasins was conducted (SCVWD, 2001). As the District does not currently have a groundwater model for these two subbasins, a static analysis was used. Unlike a groundwater model, a static analysis cannot simulate changes in recharge, pumping, or demand. Instead, the operational storage capacity was estimated as the volume between high and low groundwater surfaces, chosen to maximize storage while accounting for operational constraints such as high groundwater conditions. The draft estimate for the combined operational storage capacity of the Coyote and Llagas Subbasins ranges from 175,000 to 198,000 af. The District is working to narrow the range of estimates for operational storage capacity through further analysis.

Having an estimate of the amount of water that can be stored within the basin during wet years and withdrawn during drier times will continue to be critical in terms of long-term water supply planning. As hydrology, water demands, recharge, and pumping patterns change, the estimate of operational storage capacity will need to be updated.

Subsidence Modeling

Due to substantial land subsidence that has occurred within the Santa Clara Valley Subbasin, the District uses numerical modeling to simulate current conditions and predict future subsidence under various groundwater conditions. PRESS (Predictions Relating Effective Stress and Subsidence) is a two-dimensional model that relates the stress associated with groundwater extraction to the resulting strain in fine-grained materials such as clays. The District has calibrated the model at ten index wells within the subbasin, and has established subsidence thresholds equal to the current acceptable rate of 0.01 feet per year.
Chapter 4
GROUNDWATER MONITORING PROGRAMS

This chapter describes District programs that monitor the water quality, water levels and extraction from the groundwater basin. It also describes the District’s land subsidence monitoring program. These programs provide data to assist the District in evaluating and managing the groundwater basin. Specifically, the groundwater and subsidence monitoring programs provide the data necessary for evaluating whether the program outcomes result in achievement of the groundwater management goal.

Future efforts in groundwater monitoring will include the annual development of a groundwater conditions report, which will contain information regarding groundwater quality, groundwater elevation, and land subsidence.

GROUNDWATER QUALITY MONITORING

Program Objective
The objective of the General Groundwater Quality Monitoring Program is to determine the water quality conditions of the County’s groundwater resources. By monitoring the quality of the groundwater basin, the District can discover adverse water quality trends before conditions become severe and intractable, so that timely remedial action to prevent or correct costly damage can be implemented. In general, the District monitors groundwater quality to ensure that it meets water quality objectives for all designated beneficial uses, including municipal and domestic, agricultural, industrial service, and industrial process water supply uses.

Background
Groundwater quality samples have been collected in the County since the 1940s by the District and by others. In 1980, District staff reviewed the existing general groundwater quality monitoring program and recommended changes and enhancements. The recommended changes and enhancements included revising the monitoring well network, revising the list of water quality parameters to be measured, and collecting groundwater samples biennially (every other year). Groundwater samples were analyzed for general mineral and physical water quality parameters.

Current Status
The general groundwater quality monitoring program is designed to provide specific water quality data for each of the three subbasins (Figure 2-3). The monitoring well network includes one or more wells in each hydrographic unit yielding significant amounts of water. Groundwater samples collected from the monitoring network are intended to reflect the general areal and vertical groundwater quality conditions. Currently, the following program activities occur biennially:

- Water quality samples are collected from a monitoring network of approximately 60 wells (Figure 4-1).
• Samples are analyzed for general minerals, trace metals, and physical characteristics.

• Analytical results are evaluated, the database is updated, and routine water quality computations are performed.

• A summary report describing the water quality of the groundwater resources in the County is prepared.

Figure 4-1
Water Quality Monitoring Wells

In addition to the 60 wells monitored by the District for general groundwater quality analysis, the District monitors additional wells for special studies. There are currently approximately 100 wells monitored for MTBE, 60 wells monitored for nitrate, and 30 wells monitored for saltwater intrusion. The District also receives groundwater quality data for approximately 300 water retailer wells from the California Department of Health Services.

Monitoring results suggest that water quality is excellent to good for all major zones of the groundwater basin. This is based on comparing groundwater quality monitoring results to water quality objectives. Regional Water Quality Control Boards designed water quality objectives based on beneficial uses. Water quality objectives for municipal and domestic, industrial service, and industrial process water supply beneficial uses are equivalent to the drinking water standards established by the California Department of
Health Services. Water quality objectives for agricultural beneficial uses are defined specifically in the Regional Water Quality Control Boards' Water Quality Control Plans. Drinking water standards, agricultural water quality objectives, and monitoring results for common groundwater constituents are summarized in Table 2-2.

The more common trace constituents, which are considered unwanted impurities when present in high concentrations, are generally not observed in concentrations that adversely affect beneficial uses. Areas with somewhat degraded waters in terms of total mineral salt content have been identified in the Santa Clara Valley Subbasin and elevated nitrate concentrations have been observed in the Coyote and Llagas Subbasins. In addition, volatile organic compounds and other anthropogenic compounds have affected shallow aquifers in localized areas. Special groundwater monitoring programs have been developed to define the extent and severity of these problems and are discussed in Chapter 5.

Radon analysis was performed as a one-time special survey of current conditions and provided data for analyzing the potential impacts of upcoming drinking water standards for radon. The results of the 1999 sampling are presented in the 2000 General Groundwater Quality Monitoring report.

Future Direction

The General Groundwater Quality Monitoring Program utilizes relatively few, widely spaced monitoring points to assess large areas. Certain hydrographic units of the basin are only sparsely monitored at present. Staff is continuing to review the monitoring network to ensure that groundwater samples collected from the monitoring well network reflect areal and vertical groundwater quality conditions within each hydrographic unit. If it is determined that additional monitoring points are needed in some areas where there are no existing wells, District staff will recommend the installation of additional monitoring wells.

The District is also planning to increase the frequency of monitoring and the number of water quality parameters that are measured. Historically, the most frequent sampling frequency has been biennially. However, in order to parallel District efforts to better monitor performance in achieving desired results, the sampling frequency for the General Groundwater Quality Monitoring Program will be increased to annually. The number of water quality parameters that are measured will also be increased, so that samples are analyzed for volatile organic compounds, a significant concern in Santa Clara County. Samples will continue to be analyzed for general minerals, trace constituents, and physical characteristics.

The District will continue to assess and provide recommendations to address any adverse water quality trends that are observed through the General Groundwater Quality Monitoring Program. In addition, the District will continue to conduct special studies for specific contaminants as the need arises. As part of groundwater management planning, action levels and triggers will be developed for the constituents monitored.
The District will also begin developing annual groundwater conditions reports, which will summarize information regarding groundwater quality, groundwater elevation, and land subsidence.

GROUNDWATER ELEVATION MONITORING

Program Objective
The objective of the Groundwater Elevation Monitoring Program is to provide accurate and dependable depth-to-water field measurements for the County’s major groundwater subbasins. By monitoring the groundwater elevations, the District can evaluate the groundwater supply conditions and formulate strategies to ensure adequate water supplies, prioritize recharge activities, and minimize any adverse impacts.

Background
Collecting depth-to-water information has been one of the District’s functions since it was first formed as a water conservation district in 1929. Depth-to-water information is used to create groundwater elevation contour maps, which depict the conditions of the groundwater basin in the fall and spring of each year. Depth-to-water data are also used for subsidence modeling, to generate hydrographs needed to analyze groundwater model simulations, and to provide information to District customers on current and historical groundwater elevations.

Current Status
The District continues to collect depth-to-water field measurements, obtain depth-to-water measurements from other agencies and record that information for approximately 275 wells. Most wells in the current program are privately owned and their locations are fairly evenly distributed among the three subbasins (Figure 4-2). Current groundwater elevation monitoring includes the following:

- Collection of monthly depth-to-water field measurements from approximately 168 wells, including approximately 150 wells owned by other agencies (Figure 4-2).
- Collection of quarterly depth-to-water field measurements from approximately 108 wells (Figure 4-2).
- Maintenance of a groundwater elevation database.
- Preparation of semi-annual groundwater level elevation contour maps.

The information in the District depth-to-water database is used regularly by District staff. Each year the District answers several hundred requests for depth-to-water information from other public agencies, consultants, and the public.

Future Direction
Although the District collects depth-to-water data from many wells throughout the County, most wells were designed as production wells, with perforations at multiple
intervals to increase groundwater extraction. There are relatively few wells that measure groundwater elevations in a single depth zone. The existing Groundwater Elevation Monitoring Program is currently being updated to target monitoring wells where discrete, depth-specific groundwater elevations can be obtained, which will enable better characterization of the three-dimensional groundwater system. A new groundwater elevation monitoring network has already been designed for the Santa Clara Valley Subbasin, and another project will be undertaken to develop a monitoring network for the Coyote and Llagas Subbasins by 2003.

The proposed network for the Santa Clara Valley Subbasin will include monitoring the individual piezometric pressures at the following 79 wells, which are geographically distributed among the hydrographic units in the subbasin. Specific recommendations include the:

- Continued monitoring of 31 depth-specific wells monitored in the existing depth-to-water program.
- Acquisition of 16 aquifer-specific wells from other organizations.
- Addition of 25 wells that are not part of the existing depth-to-water program.
- Installation of 7 new multiple-well monitoring sites to be constructed by 2003.
Monitoring these 79 wells will provide invaluable information to aid in characterizing depth-specific groundwater conditions. However, in addition to these 79 wells, monitoring of the wells in the current groundwater elevation network will continue indefinitely, as the water level data can be useful even though it cannot be attributed to specific depth zones. Monitoring is recommended on a quarterly basis during the months of January, April, July, and October, although some wells will be monitored monthly. A quarterly monitoring frequency is consistent with the historical groundwater level data in the basin, and is currently adequate in terms of current groundwater elevation monitoring needs. A change in monitoring frequency will be assessed if necessary.

The proposed monitoring network for the Santa Clara Valley Subbasin will be re-evaluated in 2003 to ensure that monitoring needs can be met with the wells proposed. A monitoring network for the Coyote and Llagas Subbasins will be developed by 2003.

Since groundwater information is continually utilized both within and outside the District, an online database that is easily accessible through the District’s web site is being evaluated as it would significantly reduce District staff time spent in database maintenance and fulfilling depth- to-water data requests.

GROUNDWATER EXTRACTION MONITORING

Program Objective
The amount of groundwater extracted from the groundwater basin is recorded through the Water Revenue Program. Data produced by this program are used primarily to: 1) determine the amount of water used by each water-producing facility and collect the revenue for this usage, and 2) fulfill the provisions of Section 26.5 of the District Act which requires the District to annually investigate and report on groundwater conditions.

Background
The Water Revenue Program tracks groundwater, surface water, treated water and recycled water production within the District. The first collection of groundwater extraction data began shortly after the State Legislature authorized amendments to the Santa Clara County Flood Control and Water District Act in June 1965. As part of implementation of the District Act, wells within the District were registered. The District has been collecting groundwater extraction data from wells in the Santa Clara Valley Subbasin (also known as the North Zone or Zone W-2) since the early 1960s. After the merger with Gavilan Water Conservation District in 1987, this program expanded to the Coyote and Llagas Subbasins (the South Zone, or Zone W-5).

Current Status
To determine the amount of all water produced in the District, including groundwater, the Water Revenue Program:

- Develops and distributes water extraction statements to well owners within the two water extraction zones on a monthly, semi-annual, and annual basis.
• Audits incoming water extraction statements and completes field surveillance to ensure that water extraction information is accurate.

• Audits and invoices surface, treated and recycled water accounts.

• Assists the public in completing and filing water extraction statements.

• Maintains files for surface, ground, treated and recycled water accounts.

• Administers and maintains a database containing all water extraction information.

• Initiates and approves the installation of water measurement devices (meters) on water-producing wells.

• Registers (assigns state well numbers) and maps all water extraction wells.

Water extraction data is stored in an electronic database (Water Revenue Information System) and on paper. Program staff maintain accounts and records for more than 6,000 water extraction wells and approximately 27,000 monitoring wells. Staff provide information on these accounts to other District programs and outside customers, and provide other customer support as necessary.

Although approximately half of the wells within the County are not metered, metered wells extract the vast majority of groundwater used within the County. Where meters are not feasible, crop factors are used to determine agricultural water usage and average values adjusted for residences. Water meter testing and maintenance are performed on a regular basis. Maintenance is done to ensure meters are performing properly and accurately. When problems are discovered, meters are repaired or replaced. Meters are also replaced on a regular basis for testing and rebuilding.

The following table shows type of usage for wells in Zone W-2 (Santa Clara Valley Subbasin) and Zone W-5 (Coyote and Llagas Subbasins) and the number of meters recording usage.

<table>
<thead>
<tr>
<th></th>
<th>North Zone (W-2)</th>
<th>South Zone (W-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Wells</td>
<td>81</td>
<td>570</td>
</tr>
<tr>
<td>Municipal & Industrial Wells</td>
<td>1,875</td>
<td>350</td>
</tr>
<tr>
<td>Domestic Wells</td>
<td>567</td>
<td>2,569</td>
</tr>
<tr>
<td>Ag & M&I Wells</td>
<td>77</td>
<td>511</td>
</tr>
<tr>
<td>Total Number of Wells</td>
<td>2,600</td>
<td>4,000</td>
</tr>
<tr>
<td>Number of Metered Wells</td>
<td>1,017</td>
<td>395</td>
</tr>
<tr>
<td>Percentage of Metered Wells</td>
<td>40%</td>
<td>10%</td>
</tr>
</tbody>
</table>
In accordance with Section 26.5 of the District Act, the District prepares an annual Water Utility Enterprise Report, which contains the following information: present and future water requirements of the County; available water supply; future capital improvement, maintenance and operating requirements; financing methods; and the water charges by zone for agricultural and nonagricultural water. Recommended water rates are based on multi-year projections of capital and operating costs. Water charges can be used as a groundwater supply management tool, as the surcharge for treated water can be adjusted to encourage or discourage extraction from the groundwater basin.

Future Direction

Groundwater extraction monitoring data will continue to be important as a basis of groundwater management decisions and for groundwater revenue receipts. Program staff are currently evaluating the existing database and hope to convert the database into a relational database and link it to the newly developed Geographic Information System (GIS) based well mapping system. This will enable staff to evaluate groundwater use data geographically and to provide this data to groundwater management decision-makers in a meaningful and easy to use format.

LAND SUBSIDENCE MONITORING

Program Objective

The objective of the Land Subsidence Monitoring Program is to maintain a comprehensive system to measure existing land subsidence and to predict the potential for further subsidence.

Background

Land subsidence was first noticed in 1919 after an initial level survey conducted in 1912 by the National Geodetic Survey. At that time, 0.4 feet of subsidence was measured in downtown San Jose. Between 1912 and 1932, over 3 feet of subsidence were measured at the same location. As a result of this drastic increase in subsidence, an intensive leveling network was installed for periodic re-leveling to evaluate the magnitude and geographical extent of subsidence. From 1912 to 1970, cumulative subsidence measured at the same San Jose location totaled approximately 13 feet.

A cross-valley differential leveling survey circuit was run in the 1960s and continues to be conducted. The level circuit was conducted almost annually from 1960 through 1976, once in 1983, and annually from 1988 to the present.

In 1960, the United States Geologic Survey (USGS) installed extensometers, or compaction recorders, in the two 1,000-foot boreholes drilled in the centers of recorded subsidence sites in Sunnyvale and San Jose. The purpose for installing these wells was to measure the rate and magnitude of compaction that occurs between the land surface and the bottom of the well.

In the mid-1960s, imported water from San Francisco’s Hetch-Hetchy reservoir and the State Water Project’s South Bay Aqueduct played a major role in restoring groundwater
levels and curbing land subsidence. A combination of factors including imported water, natural recharge, decreased pumping and increased artificial recharge has reduced land subsidence to an average 0.01 feet per year.

The District developed subsidence thresholds that relate the expected rate of land subsidence from various groundwater elevations. The Predictions Relating Effective Stress and Subsidence (PRESS) computer code was utilized for this model, and 10 index wells located throughout the Santa Clara Valley Subbasin were used as control points for the subsidence calibration and prediction.

Current Status
The existing land subsidence monitoring program includes the following:

- Monitoring land subsidence at two extensometer sites in San Jose and Sunnyvale (Figure 4-3).

- Conducting an annual leveling survey across three different directions in the valley to measure any land subsidence that may be occurring away from the extensometers (Figure 4-3).

- Analyzing data to evaluate the potential of re-initiating land subsidence.

Figure 4-3
Location of Extensometers and Leveling Survey Benchmarks
The extensometer in the San Jose site has recently been upgraded and equipped with monitoring and storage instrumentation to execute the data acquisition process electronically. Data collected from this site continues to be analyzed to determine any changes in the rate of land subsidence.

In 1998, the District entered into a cooperative agreement with the USGS to use Interferometric Synthetic Aperture Radar (InSAR) technology to measure any subsidence that may have not been captured in the existing monitoring program. This new technology compares satellite images taken at different times and reveals any changes in ground surface elevations with an accuracy of a few millimeters. INSAR covers the entire County, unlike traditional monitoring which is site-specific. Under the cooperative agreement, InSAR images were analyzed both seasonally and over a five-year period. Data from this study reasonably replicated and supported the data obtained from the District’s extensometers.

The leveling survey continues to be conducted annually. A new leveling line was added to the leveling survey in 1998 as InSAR images indicated that additional information was needed along the Silver Creek Fault in San Jose.

Future Direction

Monitoring and data storage equipment have been installed at the San Jose extensometer site. Plans to enhance the land subsidence monitoring network program include the installation of new equipment to facilitate the monitoring and storage of data from the extensometer site in Sunnyvale, and the evaluation of datum stability at this site.

Through the 1998 study with the USGS, InSAR technology was proven able to reasonably replicate historical subsidence data from extensometers and the cross-valley leveling surveys. District staff will investigate the benefits of incorporating InSAR technology into the current land subsidence monitoring program.

The District will continue to utilize groundwater flow and subsidence models to simulate land subsidence as a result of different groundwater scenarios and groundwater management alternatives.
Chapter 5
GROUNDWATER QUALITY MANAGEMENT PROGRAMS

This chapter describes District programs that address nitrate management, saltwater intrusion, well construction and destruction, wellhead protection, leaking underground storage tanks, toxic cleanup, land use and land development review, and other groundwater protection issues. These programs help protect groundwater quality by identifying existing and potential groundwater quality problems, assessing the extent and severity of such problems, and preventing and mitigating groundwater contamination.

NITRATE MANAGEMENT

Program Objective
The objective of the Nitrate Management Program is to delineate, track and manage nitrate contamination in the groundwater basin in order to ensure the basin’s viability as a long-term potable water supply. More specifically, the objectives are as follows:

- Reduce the public’s exposure to high nitrate concentrations.
- Reduce further loading of nitrate.
- Monitor the occurrence of nitrate.

Background
The conversion of nitrogen to nitrate is a natural progression in the nitrogen cycle. In the form of nitrate, nitrogen is highly soluble and mobile. Due to its solubility and mobility, nitrate is one of the most widespread contaminants in groundwater. Unlike other compounds, nitrate is not filtered out by soil particles. It travels readily with rain and irrigation water into surface and groundwater supplies.

The amount of nitrate reaching the groundwater depends on the amount of water infiltrating the soil, the concentration of nitrate in the infiltrating water and soil, the soil type, the depth to groundwater, plant uptake rates, and other processes. Nitrate concentrations now observed in the groundwater basin might be a result of land use practices from several decades ago.

High concentrations of nitrate in drinking water supplies are a particular concern for infants. Nitrate concentrations above the federal and state maximum contaminant level (MCL) of 45 milligrams per liter (45 mg/L NO₃) have been linked to cases of methemoglobinemia (“Blue Baby Syndrome”) in infants less than 6 months of age. In addition, public health agencies, including the California Department of Health Services, are conducting research to determine whether excess nitrate in food and drinking water might also have long term carcinogenic (tendency to cause cancer) or teratogenic (tendency to cause fetal malformations) effects on exposed populations.
Communities in the South County rely solely on groundwater for their drinking water supply. The District created the Nitrate Management Program in October 1991 to manage increasing nitrate concentrations in the Llagas Subbasin.

In June of 1992, an extensive study was initiated to review historical nitrate concentrations, identify potential sources, collect and analyze groundwater samples for nitrate, and develop a set of recommendations for the prevention and control of nitrate loading in South County. The results of the study, completed in February 1996, indicated that nitrate concentrations in the Llagas Subbasin are generally increasing over time and that elevated concentrations still exist throughout the subbasin.

In addition, the study found that there are many sources of nitrate loading in Llagas Subbasin. The major sources of nitrate are fertilizer applications, and animal and human waste generation. The southern portion of Santa Clara County has historically been an agricultural area. Only in recent years has agricultural acreage declined due to residential growth. However, due to the slow movement of surface water to the water table, residual nitrate concentrations in the soil from past practices may continue to contribute to increasing nitrate concentrations in the groundwater for several years or decades to come.

The specific recommendations of the study were the following: increase public education to reduce loading and exposure; blend water to reduce exposure; review and possibly revise the well standards; increase the level of regional wastewater treatment in order to reduce reliance on septic systems; increase point source regulation; conduct recharge feasibility studies; increase monitoring of the groundwater basin; and to consider alternative water supplies, treated surface water, water recycling and enhanced sewage treatment technologies for on-site systems.

In 1997, the District began implementing the public education portion of the study recommendations. A large agricultural outreach effort was initiated. As part of that outreach, the District entered into a contract with a Mobile Irrigation Lab to offer free irrigation evaluations to farmers in order to improve the efficiency of their irrigation systems and scheduling. By improving the irrigation efficiency and distribution uniformity, the irrigators can reduce the amount of water and nitrate leached beyond the active root zone of the crop and into the groundwater. Over 250 people have attended seminars to increase their awareness of the mobile lab and to learn nitrate-sampling and nitrogen management techniques. Approximately 150 free soil nitrate test kits have been prepared and distributed. A series of 5 fact sheets on Nitrogen and Water Management in Agriculture was produced in cooperation with Monterey County Water Resources Agency and the Pajaro Valley Water Management Agency. English and Spanish versions have been distributed to the agricultural community through a series of seminars, mobile lab operators, other agricultural agencies and the on the District’s new Agricultural web page.

To reduce exposure, reduce loading and monitor occurrence, a large-scale public outreach effort was launched offering a free nitrate analysis to all well water users in the Llagas and Coyote Subbasins. Approximately 2,500 residents were notified through
direct mailings about the program and the issues surrounding nitrate in drinking water. An unknown number were notified through newspaper, radio and television coverage. More than 600 private wells shown in Figure 5-1 have been tested for nitrate. Along with the results of the testing, residents were mailed a fact sheet describing what nitrate is, where it comes from, what the health effects are, how to prevent further loading and where to find more information.

Of the 600 private wells tested, more than half exceed the federal safe drinking water standard for nitrate. Of those that exceed the standard, half of the residents use an alternate water source or point-of-use treatment for their drinking water. The data also indicated that nitrate concentrations in the Llagas Subbasin continue to increase, that nitrate concentrations in the Coyote Subbasin have remained steady, and that high concentrations of nitrate are sporadically located throughout both subbasins. A report on the findings was produced in December 1998 and was distributed to several local and state agencies. These elevated nitrate levels were detected only in private wells; it should be noted again that public water supply wells within the County meet drinking water standards.

Figure 5-1

South County Nitrate Concentration
Current Status
To reduce nitrate loading, the District continues to schedule mobile lab evaluations and agricultural seminars. These seminars focus on how to apply irrigation water more efficiently and how to conduct soil testing for nitrate. In addition, the District is a cooperator on a grant with a soil scientist to establish field trials demonstrating and evaluating the effectiveness of in-field nitrate testing in drip and sprinkler irrigated vegetables.

To monitor nitrate occurrence, the District is conducting a comprehensive monitoring effort to track seasonal, areal, vertical and long-term trends in nitrate concentrations. The current monitoring program shown in Figure 5-2 consists of 42 deep groundwater wells (greater than 100 feet deep) and 15 shallow monitoring wells (less than 100 feet deep). The shallow monitoring wells will allow us to track what we might expect to see in the deeper wells in the future. Network wells are being monitored on a quarterly basis to track seasonal variations.

Figure 5-2
Current South County Nitrate Monitoring Network

To reduce nitrate exposure, the District is working with the Santa Clara County Department of Environmental Health to produce a well owner’s guide. Among other things, the guide will contain information on recommended sampling, testing and disinfecting practices, as well as measures to protect against contamination.
Future Direction
Continued public education and outreach will remain the focus of the nitrate management program to reduce further loading and prevent possible exposure. If nitrate concentrations continue to increase at all depths, more extensive action may be required. The District may need to investigate alternate water supplies for the many private well water users in the area. Alternate water supplies could include a water treatment plant to remove the nitrate from the existing groundwater supply or the treatment of water from the San Felipe pipeline.

More research is needed to determine how much nitrate is contributed through the various manure management practices currently used. Best Management Practices (BMPs) for manure management need to be determined, and they need to be communicated to the public in a manner that will encourage adoption. More research is also needed regarding reduction of nitrate loading from septic systems; specifically, regarding whether the benefit of removing or reducing septic system loading justifies the economic and political cost of increasing sewer line connections.

To achieve the objective of monitoring nitrate occurrence, the District will continue to sample the existing monitoring network in the Llagas and Coyote Subbasins on a quarterly basis. Two years of quarterly data has been collected so far and staff are in the process of analyzing the data for seasonal, areal, and long-term trends. Staff is beginning a thorough evaluation of the extent and severity of nitrate contamination in the Santa Clara Subbasin, based on water quality data from the District's groundwater monitoring program and the water retailers.

The District may also investigate the feasibility of remediating nitrate contamination. There is some indication that nitrate concentrations around recharge facilities are lower than elsewhere. This finding would need to be confirmed as part of an investigation into reducing nitrate concentrations by additional recharge. Similarly, the District may be able to remediate nitrate contamination by setting up several pump and treat operations. High nitrate water would be pumped out of the basin, treated and injected back into the basin. Phytoremediation, which uses deep-rooted plants to draw the nitrate out of the vadose zone before it can reach groundwater, may be employed in some areas. A fourth possibility is reactive zone remediation where a reagent is injected into the system to intercept and immobilize or degrade the nitrate into a harmless end product. A thorough investigation of any remediation technology would need to occur before prior to its adoption.

SALTWATER INTRUSION PREVENTION

Program Objective
The objective of the Saltwater Intrusion Prevention Program is to monitor and to protect the groundwater basin from seawater intrusion.
Background
The movement of saline water into a freshwater aquifer constitutes saltwater intrusion. This potential exists in groundwater basins adjacent to the sea or other bodies of saline water. Intrusion of saltwater into a freshwater aquifer degrades the water for most beneficial uses and, when severe, can render it virtually unusable. Salty water can corrode holes in well casings and travel vertically to other aquifers not previously impacted. Once freshwater aquifers are rendered useless by a severe case of saltwater contamination or intrusion, it is extremely difficult and costly to reclaim them.

Comparison of older mineral analyses of groundwater from wells in the San Francisco bayfront area in Santa Clara and Alameda counties, some dating back to 1907, with more recent data shows that saltwater intrusion has occurred in the upper aquifer. With much higher water demands after World War II and the occurrence of land subsidence, saltwater intrusion conditions became aggravated and encompassed a portion of the baylands (the area adjacent to the southern San Francisco Bay). Bayshore Freeway (U.S. Route 101) and the Nimitz Freeway (Interstate 880) delineate the southern limits of this area.

The alluvial fill deposits of the Santa Clara Valley Subbasin in the flat baylands area consist of thin aquifers amongst abundant clays. The aquifers are broadly grouped into two water-bearing zones referred to as the “upper aquifer zone,” which usually occurs at depths less than 100 feet, and the “lower aquifer zone,” which usually occurs at depths greater than 150 to 250 feet, and which constitutes the potable aquifer system. Previous studies indicate the upper aquifer zone fringing San Francisco Bay is widely intruded by saltwater. The lower aquifer zone has pockets of small areas of elevated salinity associated with migration through abandoned wells.

Within the upper aquifer zone, the “classical case” of intrusion which occurs by displacement of freshwater by seawater and is indicated by total dissolved salt content over 5,000 mg/L, has progressed only a short distance inland from the bayfront, estuaries or salt evaporator ponds as shown in Figure 5-3. This intrusion had been induced when pumping of the upper aquifer and land subsidence reversed the hydraulic gradients, which had originally been toward the Bay. A large mixed transition zone precedes this intruding front with its outer limit arbitrarily defined by the 100 mg/L chloride line.

The greatest inland intrusion of the mixed transition water occurs along Guadalupe River and Coyote Creek. The large mixed transition zone is caused by saltwater moving upstream during the high tides and leaking through the clay cap into the upper aquifer zone when this zone is pumped. Land surface subsidence has aggravated the condition of intrusion by allowing farther inland incursion of saltwater up the stream channels from the Bay and by changing the gradient directions.
Data has revealed a local area of high salt concentration in the upper aquifer zone in the Palo Alto bayfront area. This locally concentrated groundwater has moved inland historically and has the potential to continue farther inland. It is in this area that the District constructed a 2-mile-long hydraulic barrier in order to prevent further intrusion and to reclaim portions of the intruded aquifers.

The lower aquifer zone is only mildly affected; the area of elevated salinity encompasses a much smaller area than that of the upper aquifer zone (Figure 5-4). The contaminated lower aquifers lie beneath the intruded portion of the upper aquifer zone. The areal distribution and the variable concentration of the saltwater contamination with time imply that the intrusion into the lower aquifer occurred as seasonal slugs of contaminated water were induced from either the surface or the upper aquifer. As the clay aquitard between the upper and lower aquifer zones is essentially impermeable, the salinity in the lower aquifer zone is thought to have occurred through improperly constructed, maintained or abandoned wells. As a result of this finding, the operation of the hydraulic barrier was discontinued.
The resumption of land surface subsidence is the greatest potential threat to aggravating the intrusion condition, as it would further depress the land surface fronting South San Francisco Bay. This would increase the inland hydraulic gradient relative to the classical intrusion front and expose a larger area of the upper aquifer zone to intrusion as a consequence of the greater inland incursion of tidal waters. A lowering of the piezometric level in the lower aquifers, which is related to the cause of subsidence, will also increase the potential for intrusion into the lower zone.

Current Status
As part of the Saltwater Intrusion Prevention Program, the defective wells in the northern Santa Clara Valley Subbasin along San Francisco Bay were to be located and destroyed. The District conducted an extensive program of locating and properly destroying these contaminant conduit wells. After these defective wells were located, the owners were required to properly destroy them under District ordinance, or by litigation if necessary. From District records, a list of 45 defective wells to be destroyed was generated.

Since the inception of this program, the Board has authorized a more comprehensive well destruction program, through which abandoned wells near areas of known chemical contamination can be destroyed with District funds. This program began in October 1984, and was in part a result of general concerns about contamination of useable aquifers by saltwater as well as by industrial chemicals throughout the County. Several
wells in the area were included in this parallel program, many of which were not identified as defective or potential conduit wells.

Of the 45 potential conduit wells, six were removed from the list as they do not appear to be acting as conduits. In 1985, the District’s Groundwater Protection Section pursued destroying the remaining 39 wells through District Ordinance No. 85-1. This ordinance gives the District authority to require owners of wells determined to be “public nuisances” to destroy the wells or to upgrade them to active or inactive status. Of the 39 potential conduit wells identified, 10 were not located and were presumed destroyed without a permit. The remaining wells were all properly destroyed.

The District continues to monitor the extent and severity of saltwater intrusion. The current Saltwater Intrusion Monitoring Program consists of 21 monitoring wells that are sampled quarterly as shown in Figure 5-5. Five of these wells monitor the status of saltwater intrusion in the lower aquifer zone, while the remaining 16 wells monitor the upper aquifer zone. Originally, the program consisted of 25 wells. Eight of these wells could not be located during recent field investigations and presumably were destroyed by the owners. However, work is commencing to replace the lost wells with District-owned wells and restore the monitoring program to its original form.

Figure 5-5
Saltwater Intrusion Monitoring Locations
Future Direction
The present status of the Saltwater Intrusion Prevention Program is subject to change, depending upon the future basin operation and groundwater demand in the area. The two economically practical ways to prevent or minimize any further intrusion are through management of the groundwater basin and strict enforcement of ordinances on well construction and destruction standards. These approaches have been adopted by the District and should continue to be implemented.

Saltwater intrusion continues to be monitored. Monitoring data are stored by electronic and conventional means. Electronic storage consists of a geographically referenced database of monitoring wells and a related database of water quality information. Conventional storage consists of filing hard copies of laboratory analytical reports in the appropriate well folders and providing data to DWR. Biennial evaluations of the data are documented in the General Groundwater Quality Monitoring Program reports. The monitoring program, including well location and sampling frequency, will be evaluated with respect to long-term groundwater quality protection strategies and overall basin management.

WELL CONSTRUCTION/DESTRUCTION PROGRAMS

Well Ordinance

Program Objective
The objective of the Well Ordinance Program is to protect the County’s groundwater resources by ensuring that wells and other deep excavations are constructed, maintained and destroyed such that they will not cause groundwater contamination. To meet this goal, the Well Ordinance Program:

- Develops standards for the proper construction, maintenance, and destruction of wells and other deep excavations.
- Educates the public, including contractors, consultants and other government agencies about the Well Ordinance and the Well Standards.
- Verifies that wells are properly constructed, maintained and destroyed using a permitting and inspection mechanism.
- Takes enforcement action against violators of the well ordinance.
- Maintains a database and well mapping system to document information about well construction and destruction details, a well’s location, and well permit and well violation status.

The scope of the Well Ordinance Program includes all activities relating to the construction, modification, maintenance, or destruction of wells and other deep excavations in the County.
Background
In the late 1960s, following post-war industrialization and development of Santa Clara County, it became apparent that abandoned or improperly constructed wells and other deep excavations (e.g. elevator shaft pits) are potential conduits through which contaminants can travel from shallow, potentially contaminated aquifers, to deeper drinking water aquifers. Recognizing this, in 1971, a District advisory committee consisting of representatives from local agencies, the District, and the Association of Drilling Contractors, was established.

The committee was charged with the development of well construction standards and standards for the proper destruction of abandoned wells. The Board adopted standards for well destruction and construction in October 1972 and January 1975, respectively. In 1975, the District Board of Directors passed the first District Well Ordinance.

Both the Standards and the Well Ordinance have undergone numerous revisions. The most recent version of the well standards, the Standards for the Construction and Destruction of Wells and Other Deep Excavations in Santa Clara County, was adopted by the Board in July 1989. The Board passed district Well Ordinance 90-1 in April 1990. These documents address the permitting and proper construction and destruction of wells and other deep excavations, including water supply wells, monitoring wells, remedial extraction wells, vadose wells, cathodic protection wells, injection wells, storm water infiltration wells and elevator shaft pits.

Beginning in 1975, well construction and destruction permits were required by the District and the District began inspecting every well that was constructed. Well destruction activities were first inspected by the District in 1984.

Since the inception of well permitting, the annual number of permits issued has greatly increased. The District issued approximately 400 well permits in 1976, the first full year of permitting, to a maximum of approximately 2,544 permits in 1994.

The District is in compliance with Sections 13803 and 13804 of the State Water Code and thereby has the authority to assume the lead role in the enforcement of the State Well Standards, the assignment of State Well Numbers, and the collection of State Drillers Reports for all wells constructed or destroyed in Santa Clara County.

Current Status
To date, the District has permitted and inspected the construction of approximately 3,000 water supply wells, 22,000 monitoring wells, 4,000 exploratory borings, and the destruction of 9,500 wells under the Well Ordinance Program.

The District has recently completed converting the paper-based well maps to a GIS based well mapping system.
Future Direction
In order to continue protecting the District’s groundwater resource, the District will continue implementation of the program and will continue to regulate the construction and destruction of wells in the County. District staff will re-write District’s well standards and ordinance to address recent changes in well construction and destruction techniques. District staff is also currently evaluating District’s existing well information database and would like to convert the database into a relational database format and link it to the newly developed GIS based Well Mapping System.

Dry Well Program

Program Objective
The objective of the Dry Well Program is to minimize the impacts of dry wells on groundwater quality. The main objectives of this program are to:

- Control installation of new dry wells.
- Destroy existing dry wells that have contaminated or may contaminate groundwater.
- Educate planning agencies and the public about the threat that dry wells pose to groundwater quality.

Background
Dry wells, also known as storm water infiltration devices, are designed to direct storm water runoff into the ground. Storm water runoff can carry pollution from surface activities. Because dry wells introduce runoff directly into the ground, they circumvent the natural processes of pollution breakdown and thereby increase the chance of groundwater contamination. Additionally, dry wells have been sites of illegal dumping of pollutants.

In Santa Clara County, at least 8 serious contamination sites were caused or aggravated by the presence of dry wells introducing contamination into the groundwater. One dry well site has a solvent plume more than 2,000 feet long and more than 200 feet deep in a recharge area of South County where the only source of drinking water is groundwater.

In 1974, the Environmental Protection Agency (EPA) developed the Underground Injection Control Program under the Safe Drinking Water Act. The program requires the owners and operators of all shallow drainage wells to submit information regarding the status of each well to the EPA. The Regional Board adopted the “Shallow Drainage Wells” amendment to the Basin Plan in 1992. The Basin Plan amendment requires the local agency to develop a shallow drainage well control program that would locate existing shallow wells and establish a permitting program for existing and new wells.

In 1991, the District and municipal agencies began development of a Storm Water Infiltration Policy to satisfy Regional Board requirements. In August 1993, the District adopted Resolution 93-59 regarding Storm Water Infiltration Devices.
Current Status
Since 1993, owners of dry wells deeper than 10 feet have been required to register their wells by filing a “Notice to Continue Use” with the District. Dry well owners can continue using their wells as long as the well is not an immediate threat to groundwater quality. Local cities, businesses, contractors and private citizens regularly call for District guidance on dry wells.

The District continues to issue permits for dry wells greater than 10 feet deep and for the destruction of dry wells. District staff advise the public and planning agencies about the appropriate use of dry wells to mediate storm water problems generally and on a case-by-case basis. District staff continue to work with local programs to clarify the District dry well policy. Local inspecting agencies continue to work with the District to locate and register dry wells.

Future Direction
The Dry Well Program is being incorporated into the Well Ordinance Program. Specific standards for dry wells will be incorporated into the next revision to the Well Standards. These standards include prohibiting the construction of dry wells greater than 10 feet deep and defining dry wells to include all shallow drainage wells, not just shallow drainage wells receiving storm water. The purpose of revising the program to incorporate it into the Well Ordinance Program is to clarify permitting and construction standards for dry wells, to expand the definition of devices covered by the Well Standards so that all wells that bypass natural protection processes are subject to standards for protecting groundwater, and to simplify the process by which dry wells are permitted.

Abandoned Water Well Destruction Assistance

Program Objective
The objective of the Abandoned Well Destruction Assistance Program is to protect the County’s groundwater resources by helping property owners properly destroy old, abandoned water supply wells that they have discovered.

To meet the program’s objective, the District:

- Passed a Board Resolution (94-87) allowing District assistance to property owners who discover abandoned wells.
- Enters into annual contracts with well drillers to complete work associated with the project.
- Destroys abandoned wells for property owners.

Background
Due to the agricultural history of the County and to subsequent post-World War II development, many former water supply wells were abandoned and buried and remain
potential vertical conduits that may transport contaminants into the District’s deep, water supply aquifers.

Some estimates indicate that there may be as many as 10,000 abandoned water supply wells within the boundaries of the Santa Clara Subbasin. Since there are no official records for these wells, the District has no knowledge of their existence or their locations.

In the mid-1980s, the District took a proactive stance on active and abandoned water supply wells found within known contamination plumes. At that time, with assistance from the Regional Board, the District actively searched for and destroyed known active wells and abandoned wells.

However, when abandoned water wells were discovered in areas not threatened by known groundwater contamination, they were not included in the District’s well destruction efforts, but instead were treated as well violations under the Well Ordinance Program. As well violations, the District proceeded with enforcement action to force the property owner to properly destroy the well.

Unfortunately, this enforcement action often took months to complete. Property owners often didn’t have the $3,000 to $15,000 dollars needed to destroy the well and had to secure loans to complete the destruction. Many property owners had negative feelings about the District after the enforcement action, especially considering that most property owners had no previous knowledge of the well and when they had discovered the well, they had been the first to inform the District of its existence.

District staff believed that while a well was found on an owner’s property (and according to the Well Ordinance, that the property owner is responsible for destroying it), the owner wasn’t actually responsible for the well’s current status (abandoned and buried) and because the destruction of the well was in the best interest of the District, that the District should destroy it.

Therefore, in 1994, the District initiated the Abandoned Well Destruction Assistance Program to aid property owners who happen to discover an abandoned water supply well on their property. Under the Abandoned Well Destruction Program, the District destroys abandoned water wells if: 1) the property owner had no previous knowledge of the well, 2) the well was not registered with the District, 3) the well has no surface features that would have obviously indicated its presence, and, 4) the property owner enters into a Right of Entry Agreement with the District.

Current Status
Since the program’s inception in 1994, the District has destroyed 108 abandoned wells under the Abandoned Well Destruction Program. Most of these wells were first discovered and reported to the District because they were flowing under artesian pressure.
Future Direction
Staff will continue to implement the program. Annually, staff receives reports of approximately 20 wells that meet program criteria and staff expect that this trend to continue.

WELLHEAD PROTECTION

Program Objective
The Wellhead Protection Program (WHP) represents the groundwater portion of the District’s Source Water Assessment Program. The objective of the Wellhead Protection Program is to identify areas of the groundwater basin that are particularly vulnerable to contamination. The District uses this knowledge to focus groundwater protection, monitoring, and cleanup efforts.

Background
Groundwater vulnerability is based on groundwater sensitivity to contamination and the presence of potentially contaminating activities. Groundwater sensitivity is evaluated based on hydrogeology and groundwater use patterns. Areas with shallow groundwater, high recharge, high conductivity aquifers, permeable soils and subsurface materials, mild slopes, and high groundwater pumping rates are most sensitive to contamination. The District compiles data on hydrogeologic conditions, pumping patterns, and contamination sources, and uses GIS technology to identify areas of the groundwater basin that are particularly vulnerable to contamination.

The District first began compiling groundwater protection data in the late 1980's. In 1989, the District, in collaboration with the U.S. Environmental Protection Agency (EPA), conducted a pilot project in the Campbell area to evaluate the usefulness of GIS for groundwater protection. Data on roads, city boundaries, hazardous material storage sites, groundwater recharge facilities, wells and hydrogeology were collected and used to create GIS coverages for the Campbell study area. The project team used GIS to evaluate groundwater sensitivity and draw areas to be protected around production wells. The study concluded that GIS is a feasible tool to use for WHP programs.

After the Campbell pilot study, the District expanded its groundwater protection data collection effort to encompass the entire County. Staff developed Countywide GIS coverages of active wells, abandoned and destroyed wells, geology, soil types, depth to groundwater, leaking underground storage tank sites, and petroleum storage facilities. This data, along with water quality data, is used to identify and evaluate threats to groundwater quality.

Current Status
The District created a groundwater sensitivity map to evaluate land use development proposals and make recommendations for appropriate groundwater protection strategies. In 1996, the District built upon the pilot GIS project to assess groundwater sensitivity throughout the groundwater basin using EPA's DRASTIC method. DRASTIC stands for
depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone, and hydraulic conductivity of the aquifer. The DRASTIC method is a quantitative evaluation of these hydrogeologic factors to assess relative groundwater sensitivity. The results of this effort were several GIS coverages and a groundwater sensitivity map (Figure 5-6), which the District uses to review land development proposals. In sensitive groundwater areas, the District requests that planning agencies require, and that property owners implement, best management practices and other protection activities beyond those required by minimum standards.

Figure 5-6
Groundwater Sensitivity Map

Staff uses information on land use and the location of contaminated sites to help identify and evaluate the sources of contamination that are detected in wells. Although groundwater quality is generally good throughout the basin, contamination is occasionally detected in individual wells. By quickly locating contamination sources, we can work with the regulatory agencies to ensure prompt and adequate cleanup.

The District also uses information on well construction, well location, well pumping, leaking Underground Storage Tank (UST) site locations and conditions, land use, and hydrogeology to prioritize leaking UST sites and identify vulnerable water supply wells. Sites that pose the greatest threat to groundwater supplies are the first to receive detailed regulatory oversight. Staff also uses this information to select wells for groundwater monitoring and special studies.
District staff is working with local water retailers on the state’s Drinking Water Source Assessment and Protection (DWSAP) Program. The state’s DWSAP Program is required by the 1996 reauthorization of the federal Safe Drinking Water Act. California has until May 2003 to assess all of its drinking water sources for vulnerability to contamination. The District developed a GIS-based wellhead assessment and protection area delineation tool, which delineates protection areas according to state guidelines. Once the vulnerability assessments are completed in Santa Clara County, the District will work with the water retailers to ensure that the greatest threats to their drinking water supply wells are being addressed.

Future Direction

District staff continues to create GIS coverages that help assess groundwater vulnerability. Some coverages that are in development include solvent contamination sites and plumes, dry cleaners, hazardous materials storage facilities, septic system locations, and sewer lines. The District has found great utility in these GIS coverages, and is beginning to work with other agencies and organizations to determine how we can share GIS information and increase its use for groundwater protection. We will continue to use this information to identify areas vulnerable to groundwater contamination, and focus our monitoring, protection, and cleanup efforts.

LEAKING UNDERGROUND STORAGE TANK OVERSIGHT

Program Objective

The objective of the Leaking Underground Storage Tank Oversight Program (LUSTOP) is to protect the groundwater basin from water quality degradation as a result of releases of contaminants from underground storage tanks. The District provides regulatory oversight of the investigation and cleanup of fuel releases from USTs for most of Santa Clara County.

Background

In 1983, the State Legislature enacted the UST Law [Chapter 6.7 of the Health and Safety Code] authorizing local agencies to regulate the design, construction, monitoring, repair, leak reporting and response, and closure of USTs. In the early 1980s, several drinking water wells in the County were shut down as a result of contamination by chlorinated solvents. In 1986, the Board decided to implement a leaking UST oversight program for petroleum fuels in coordination with the San Francisco Bay Regional Water Quality Control Board (RWQCB). The District Board recognized that releases from USTs affect groundwater quality and that effective protection of the County’s groundwater basin demanded a proactive approach. They committed financial and technical resources in-house to quickly initiate the program.

In 1987, the District entered into an informal agreement with the San Francisco RWQCB to create a pilot oversight program. At that time more than 1,000 fuel leaks had been reported within the County. The District developed an in-house technical group of employees capable of providing regulatory oversight of the investigation and cleanup of
releases from USTs. In 1988, the District and the County of Santa Clara entered into a contract with the State Water Resources Control Board to implement one of the State's first Local Oversight Programs. This allowed the District to get reimbursed by state and federal funds for costs associated with operation of the program.

The State Water Resources Control Board (SWRCB) amends its Local Oversight Program contract with the District and the County annually. Over the years, many changes have occurred in the UST regulatory process as new laws were passed, scientific knowledge improved, and new investigation and cleanup strategies became available. The District’s program actively participates in ensuring that new laws and regulations continue to protect groundwater quality into the future. The District has been at the forefront of several initiatives for improving the effectiveness and efficiency of our regulatory oversight efforts and the cost-effectiveness of corrective action while protecting human health, safety, the environment and water resources.

Every leaking petroleum UST case is currently assigned to a District caseworker who provides technical and regulatory guidance to responsible parties and their consultants (Figure 5-7).

Figure 5-7

Fuel Leak Cases in Santa Clara County
The District only provides regulatory oversight on investigation and cleanup at UST sites where a release has occurred. Tank removals, leak prevention, and UST release detection activities are overseen by one of 10 other agencies, usually the local fire department. Each agency has jurisdiction over a designated geographical area in the County. If there is evidence of a leak or if contamination is detected, an agency inspector or UST owner/operator notifies the District and/or the Regional Board. The District reviews the data to confirm the release, lists the site on the Leaking Underground Storage Tank Oversight Program database, and notifies the responsible party and the SWRCB. The District then determines if the unauthorized release poses a threat to human health and safety, the environment, or water resources and, if necessary, a caseworker requests additional investigation and cleanup.

To get case closure for the release, the responsible party must provide evidence that the release does not pose a significant threat to human health and safety, the environment or water resources; or, that the release has been adequately investigated and cleaned up. Fuel leak investigation and cleanup is closely monitored by a caseworker, and the case is promptly closed when the unauthorized release no longer poses a threat to human health, safety, the environment or water resources.

Current Status
As of January 2000, a total of 2,315 fuel leak cases have been reported in the County, the majority of which have affected groundwater. Approximately 1,650 (71 percent) of reported leak cases have been closed. About 575 cases are currently within the District’s UST program, while about 75 cases receive Regional Board oversight. As a local oversight program, the District has made significant progress in closing low-risk sites and sites that have performed appropriate corrective action to reduce contamination to below levels of regulatory concern.

The presence of Methyl tert-Butyl Ether (MTBE) in gasoline has precipitated additional changes in the UST regulatory process and the manner in which sites are investigated and cleaned up. Since 1995, MTBE and other oxygenates have emerged as significant contaminants at fuel leak sites within the County, causing increased concern for the protection of groundwater resources. MTBE has been blended into gasoline in high percentages (up to 15 percent by volume) beginning in the winter of 1992 with the intent to significantly improve air quality. However, MTBE is a recalcitrant chemical in groundwater, as it does not undergo significant breakdown (bio-degradation) in groundwater. As a result, MTBE contamination can migrate considerable distances in groundwater and may impact wells miles downgradient. MTBE has been detected at more than 375 current fuel leak cases in the County, with concentrations at these sites ranging from 5 parts per billion to more than 1 million parts per billion. The District has taken a progressive and vigilant approach to protecting groundwater resources from MTBE contamination through the use of GIS to manage and analyze both UST site and regional information and in demanding a more intense and detailed level of work be performed at MTBE release sites.
The District is also very concerned regarding the increasing occurrence of MTBE at operating gasoline stations, which poses a significant threat to municipal drinking water wells within the County. In response to this threat, the District completed two studies of operating gasoline stations that were in compliance with the 1998 UST upgrade requirements. The first study, completed by Levine-Fricke in 1999, involved soil and groundwater sampling at 28 facilities to determine if releases were occurring from upgraded UST systems. MTBE was detected in groundwater at 13 of the 27 sites where groundwater was encountered. The second study, completed in 2000 (SCVWD, 2000), was a case study of 16 sites with operating USTs and high levels of MTBE in groundwater to evaluate whether undetected releases are occurring and to assess weaknesses in fuel storage, management, and delivery operation. Of the 16 sites studied, undetected releases were suspected at 13 sites.

Despite the fact that gasoline stations have been upgraded to meet stringent requirements, it is clear that faulty installations, poor maintenance and poor facility operation practices are resulting in leaks, and that improvements in the management of USTs are needed to prevent widespread contamination of groundwater.

Future Direction
The District continues to provide technical guidance and regulatory oversight to cases using improved scientific knowledge and latest investigation and cleanup strategies. The District will continue to work closely with local universities, research organizations, the water community, major oil companies, local, state and federal agencies, and the state and federal legislature to ensure that problems in the UST program are identified and that prompt effective solutions are implemented to protect groundwater quality.

An effective UST leak prevention and monitoring program is essential. There are several studies underway regarding the effectiveness of leak prevention and monitoring systems at sites. The District will continue to monitor all developments in this area and propose ongoing studies and/or regulatory changes. To ensure water resources are protected, the District actively participates in the legislative process to ensure that recalcitrant chemicals like MTBE that can cause significant groundwater degradation are not used in fuels.

One of the biggest concerns for the District regarding MTBE is the significance of both short-term and long-term threats to groundwater quality. The District is committing additional resources to gain a more extensive understanding of the groundwater basin, groundwater flow patterns, and groundwater pumping trends. This improved understanding allows for better decisions regarding: the level of oversight necessary at sites; how much investigation is required to properly understand the nature and extent of contamination at sites; the level of cleanup necessary to protect groundwater resources; and the effectiveness of the program in preventing significant short-term and long-term water quality degradation.

The District will continue responding to the public regarding USTs and groundwater contamination and will ensure that files and information are available for public review.
District staff plan to have all fuel leak files scanned and electronically accessible over the Internet in the near future. Program guidance, site information, and news of the latest developments in the program are available on the District’s web site.

TOXICS CLEANUP

Program Objective
The objective of the Toxics Cleanup Program is to ensure the protection of the groundwater basins from water quality degradation as a result of toxics and solvent contamination and spills of other non-fuel chemicals. The District performs peer review of these cases and makes water use and geologic information available to the public and environmental consultants. District staff also provide expert technical assistance to the regulatory agencies (County of Santa Clara, San Francisco and Central Coast Regional Boards, Department of Toxics Substances Control, and the Federal Environmental Protection Agency) responsible for the oversight of investigation and cleanup at non-fuel contaminated sites within Santa Clara County.

Background
Since the late 1970s, the District has provided expert technical and hydrogeologic assistance to agencies having the legal responsibility for the protection of the water resources serving the needs of Santa Clara County. The discovery of groundwater contamination at Fairchild Semiconductor in 1981 resulted in heightening the awareness for the protection of groundwater quality and the need for the District to be actively involved in ensuring that appropriate investigation and cleanup of sites was undertaken in a timely manner. District staff were actively involved with the review and analysis of early laws governing the regulation of underground storage tanks and hazardous materials and in laws, regulations, and policies to ensure groundwater resource protection. District staff have documented the migration of contamination down abandoned wells and conduits and fashioned a well installation and destruction ordinance to ensure that wells were properly installed and potential conduits properly destroyed.

Current Status
The District has records of over 700 releases of non-fuel related cases involving the release of solvents, metals, pesticides, Polychlorinated Biphenyls (PCBs), and a variety of other chemicals in Santa Clara County. The San Francisco Bay RWQCB provides regulatory oversight on over 600 cases in the Santa Clara Valley and Coyote Subbasins. The Central Coast RWQCB provides oversight on an estimated 35 cases in the Llagas Subbasin. The California Department of Toxics Substances Control provides oversight of 17 cases and the Federal EPA provides oversight of 11 sites.

The District maintains an elaborate filing system for these cases that is heavily used by the environmental consultants and the public researching contaminated sites. District staff actively track and peer review the most serious of these cases (primarily the Superfund sites). Staff provide review and comment on Site Cleanup Requirements and Cleanup and Abatement Orders prepared by the Regional Boards and investigation and cleanup reports prepared for these sites. The District provides geologic and technical
expertise to responsible parties (site owners and operators) and their consultants and staff, and regularly participate in various committees and public meetings to ensure groundwater protection issues are properly addressed.

Future Direction
The District plans to continue these efforts in addition to conducting a review of all the recorded cases to ensure that all have been properly addressed by the various regulatory agencies. Many cases have remained “inactive” and may not have performed appropriate investigation and cleanup. The District plans to inform the regional boards and other agencies of these reviews and assist them to ensure appropriate work is performed. The District also plans to make more information available regarding geologic conditions and the status of solvent and toxics cases in GIS and over the Internet.

LAND USE AND DEVELOPMENT REVIEW

Program Objective
The objective of the Land Use and Development Review Program is to evaluate the land use and developments occurring within the County for adverse impacts to watercourses under District jurisdiction and to other District facilities, including the pollution of groundwater.

Background
Land development decisions made by the cities and the County influence a variety of issues related to water quality and quantity. The District reviews land development proposals, identifies any potential adverse impacts to District facilities and provides comments to the lead agency charged with making the final decision for the proposals. The District also reviews Draft Environmental Impact Reports (DEIRs) and/or EIRs and provides comments to the lead agency.

Current Status
The District reviews and comments on proposed land development, environmental documents and city and County General plans. Review of land development proposals includes a determination of direct and indirect impacts to District facilities. Indirect impacts could result from increased runoff and flooding due to new impervious surface or introduction of pollutants to a watercourse from construction activities or urban runoff. Direct impacts to watercourses under District jurisdiction are addressed through the District’s permitting program as defined by Ordinance 83-2.

This ordinance allows the District to investigate whether a proposed project or activity will:

a. Impede, restrict, retard, pollute or change the direction of the flow of water.

b. Catch or collect debris carried by such water.
c. Be located where natural flow of the storm and flood waters will damage or carry any structure or any part thereof downstream.

d. Damage, weaken, erode, or reduce the effectiveness of the banks to withhold storm and flood waters.

e. Resist erosion and siltation and prevent entry of pollutants and contaminants into water supply.

f. Interfere with maintenance responsibility or with structures placed or erected for flood protection, water conservation, or distribution.

If a project appears likely to do any of the above, the District may deny or conditionally approve the permit application for the proposed project.

Future Direction

The California Environmental Quality Act (CEQA) provides the District an opportunity to comment in areas relevant to the issues listed above; however, cities need to make certain these issues are adequately addressed and treated. The use of Ordinance 83-2 and CEQA have generally not effected adequate attention to these issues.

In years past the District has relied on local agencies to place conditions on development projects and to include provisions that address District water supply and flood protection measures. The recent increase in development and land use coupled with more stringent environmental concerns and requirements imposed by other regulatory agencies has made it necessary for the District to shift to a more proactive approach and to undertake greater participation in development planning activities. District land use and development review staff plan to participate on interagency project teams, conduct general plan review and revision, and development of relevant policies (such as riparian corridor and building setback policies). The program will also seek revisions to Ordinance 83-2, and greater education of land development planning staff and officials.

Additional Groundwater Quality Management Activities

Groundwater Guardian Affiliate

The District was designated as Groundwater Guardian Affiliate for the year 2000. Groundwater Guardian is an annually earned designation for communities and affiliates that take voluntary, proactive steps toward groundwater protection. The district earned the designation in 2000 based on activities such as conducting irrigation, nutrient, and pesticides management seminars, sponsoring a mobile irrigation management laboratory, and creating a prototype zone of contribution delineation tool for delineating wellhead protection areas. The Groundwater Guardian Program is sponsored by The Groundwater Foundation, a private, international, not-for-profit education organization that educates and motivates people to care about and for groundwater. The District will continue to participate in the program by submitting annual work plans and reports documenting our groundwater protection efforts.
Comprehensive Reservoir Watershed Management
The District has initiated a Comprehensive Reservoir Watershed Management Project to protect the water quality and supply reliability of the District’s reservoirs. The District seeks to balance watershed uses, such as the rights of private property owners and public recreational activities, with the protection and management of natural resources. The District recognizes that preserving beneficial watershed uses can benefit reservoir water quality, which in turn benefits drinking water quality delivered to the District treatment plants and recharged into the groundwater basins.

Watershed Management Initiative
The District is an active participant in the San Francisco Bay Regional Water Quality Control Board’s Santa Clara Basin Watershed Management Initiative (WMI). The purpose of the WMI is to develop and implement a comprehensive watershed management program. The goals of the WMI include balancing the objectives of water supply management, habitat protection, flood management, and land use to protect and enhance water quality, including the quality of water used for groundwater recharge and water in the groundwater basins. The WMI will develop a watershed management plan that will set out agreed upon actions to meet stakeholder goals, including water quality protection and enhancement.

Non-Point Source Pollution Control
The District along with other agencies is the co-permittee for National Pollution Discharge Elimination System (NPDES) permit number CAS029718. The co-permittees formed the Santa Clara Valley Urban Runoff Management Program in 1990 to develop and implement efficient and uniform approaches to control non-point source pollution in storm water runoff that flows to the South San Francisco Bay, in compliance with NPDES permit responsibilities.
Chapter 6
SUMMARY

The many groundwater management programs and activities described in this document demonstrate that the District is proactive and effective in terms of ensuring that groundwater resources are sustained and protected. A summary of existing District groundwater programs is presented here, organized by report section.

Groundwater Supply Management
The objective of the District’s groundwater supply management programs is to sustain groundwater resources by replenishing the groundwater basin, increasing basin supplies, and mitigating groundwater overdraft. This is currently achieved through:

- In-stream recharge, including controlled and uncontrolled recharge through District facilities.
- Off-stream recharge through District percolation ponds and abandoned gravel pits, including activities to reduce turbidity of incoming water.
- Periodic water balance to reconcile water imports, inflows, releases, and changes in surface water storage.
- Direct injection recharge facilities.
- Water use efficiency programs.
- Estimation of operational storage capacity.
- Subsidence and groundwater flow modeling to evaluate potential impacts to the groundwater basin.
- Public outreach and education for water use efficiency programs.

Groundwater Monitoring
The District’s groundwater monitoring programs provide basic data to assist in the evaluation of groundwater conditions. Programs include:

- Groundwater quality monitoring, including sampling for general minerals, trace metals, and physical characteristics.
- Groundwater elevation monitoring, including depth-to-water measurements and the development of groundwater contour maps.
- Groundwater extraction monitoring, which tracks groundwater use throughout the County.
• Land subsidence monitoring, which measures existing subsidence.

Groundwater Quality Management
Existing programs designed to protect the groundwater from contamination and the threat of contamination include the following:

• Nitrate management program designed to delineate, track, and manage nitrate contamination by monitoring nitrate occurrence, and by reducing further loading and the public’s exposure to nitrate.

• Saltwater intrusion prevention program to prevent freshwater aquifers from degradation through monitoring and the sealing of contaminant conduit wells.

• Well construction and destruction programs to protect groundwater resources by ensuring that wells will not allow the vertical transport of contaminants.

• Wellhead protection program to identify areas of the basin that are particularly vulnerable to contamination to focus groundwater protection, monitoring, and cleanup efforts.

• Leaking underground storage tank oversight program to protect the groundwater from water quality degradation and provide regulatory oversight of investigation and cleanup of fuel releases from underground tanks.

• Toxics cleanup program to protect the basin from contamination by non-fuel chemicals.

• Land use and development review to evaluate land use proposals in terms of potential adverse impacts to District facilities.

• Public outreach and education for groundwater quality management programs.

Recommendations
In 1999, the District Board of Directors established Ends Policies that direct the Chief Executive Officer/General Manager to achieve specific results or benefits. The following Ends Policies are related to groundwater:

E.1.1.2. The water supply is reliable to meet current demands.
E.1.1.3. The water supply is reliable to meet future demands as identified in the District’s Integrated Water Resource Plan (IWRP) process.
E.1.1.4. There are a variety of water supply sources.
E.1.1.5. The groundwater basins are aggressively protected from contamination and the threat of contamination.
E.1.1.6. Water recycling is expanded consistent with the District’s Integrated Water Resource Plan (IWRP) within Santa Clara County.
E.1.2.2.3. Groundwater supplies are sustained.
Two of the Ends Policies directly relate to the management of groundwater resources: 1.1.5 - The groundwater basins are aggressively protected from contamination and the threat of contamination, and 1.2.2.3 - Groundwater supplies are sustained. As the District is now formally guided by these policies, we need to ensure that program outcomes match these ends.

Although the District manages the basin effectively, there is room for improvement of the groundwater programs in terms of meeting the Ends Policies and in the coordination and integration of the programs. Specific areas where further analysis is recommended include:

1. **Coordination between the Groundwater Management Plan and the Integrated Water Resources Plan (IWRP)** – As the District’s water supply planning document through 2040, the IWRP has identified the operation of the groundwater basin as a critical component to help the District respond to changing water supply and demand conditions. Planning and analysis efforts for future updates of the Groundwater Management Plan and the IWRP need to be integrated in order to provide a coordinated and comprehensive water supply plan for Santa Clara County.

2. **Integration of groundwater management programs and activities** – Individual groundwater management programs tend to be implemented almost independently of other programs. A more integrated approach to the management of these programs, and to the management of the basin overall needs to be developed. Integration of these programs and improved conjunctive use strategies will result in more effective basin management.

3. **Optimization of recharge operations** – As artificial recharge is critical to sustaining groundwater resources, an analysis of the most effective amount, location, and timing of recharge should be conducted.

4. **Improved understanding of the groundwater basin** – In general, the existing groundwater management programs seem to focus on managing the basin to meet demands and protecting the basin from contamination and the threat of contamination. However, improving the District’s understanding of the complexity of the groundwater basin is critical to improved groundwater management. The more we know about the basin, the better we can analyze the impact of different groundwater scenarios and management alternatives.

5. **Effective coordination and communication with internal and external agencies** – Improved communication and coordination will lead to improved groundwater management programs. Increased sharing of ideas, knowledge, and technical expertise among people involved with groundwater at the District will result in increased knowledge, well-coordinated and efficient work, and well-informed analyses and conclusions. Improved coordination with external agencies, such as retailers and state and federal organizations, will result in improved knowledge of customer needs and increased awareness of District activities.
A detailed analysis of the areas above and of all groundwater programs as they relate to Ends Policies and the groundwater management goal is recommended.

The next update of the Groundwater Management Plan, scheduled for 2002, will address the issues above and the overall management of the basin by presenting a formal groundwater management strategy for achieving the groundwater management goal in a practical, cost-effective, and environmentally-sensitive manner. The update will evaluate each groundwater program’s contribution and effectiveness in terms of the groundwater management goal and Ends Policies. Measurement criteria will be developed, and if there is no direct connection between the Ends Policies and a specific program, that program’s contribution to other linked programs will be analyzed. The update will include recommendations for changes to existing programs or for the development of new programs, standards, or ordinances. The update will also develop an integrated approach for the management of groundwater programs, and for the management of the groundwater basin in general.

Groundwater is critical to the water supply needs of Santa Clara County. Therefore, it is of the utmost importance that the District continues the progress begun with this Groundwater Management Plan. Increased demands and the possibility of reduced imported water in the future make effective and efficient management of the groundwater basin essential. The Groundwater Management Plan and future updates will identify how the management of the groundwater basin can be improved, thereby ensuring that groundwater resources will continue to be sustained and protected.
REFERENCES

Association of Bay Area Governments, 1997, Projection 98, Forecasts for the San Francisco Bay Area to the Year 2020.

County of Santa Clara Planning Office, 1994, Santa Clara County General Plan Book A.

SCVWD, 1994, Water Supply Overview Study.

SCVWD, 2001, Operational Storage Capacity of the Coyote and Llagas Groundwater Subbasins (Draft).

Tibbets and Keifer, 1921, Santa Clara Valley Water Conservation Project.

USGS, 1988, Land Subsidence in the Santa Clara Valley, California, as of 1982, Professional Paper 497-F.