Front cover photos (clockwise from top):
Hosie Low Flow Crossing; Mormon Slough Tressel;
Caprini Low Flow Crossing; Calaveras Headworks
Calaveras River Fish Migration Barriers Assessment Report

Assessments

September 2007

Arnold Schwarzenegger
Governor
State of California

Mike Chrisman
Secretary for Resources
The Resources Agency

Lester A. Snow
Director
Department of Water Resources
The format of the Calaveras River Fish Migration Barriers Assessment Report is new. It allows for digital presentation on the Internet, compact disk (CD), and computer screen. It also allows for economical printing of the document.

If you need this publication in an alternate form, contact the Equal Opportunity and Management Investigations Office at TDD 1-800-653-6934, or Voice 1-800-653-6952.
Foreword

In 2005, The California Department of Water Resources published the inaugural Bulletin 250 – Fish Passage Improvement. The bulletin was the result of a joint interagency collaboration between the Department, the Department of Fish and Game, NOAA’s National Marine Fisheries Service, and the US Fish and Wildlife Service through CALFED’s Ecosystem Restoration Program. The document recognized the depletion of migratory fish species caused by artificial structures in the Sacramento and San Joaquin River systems. Bulletin 250 promoted continued and increased actions by governments and private organizations for the protection and recovery of listed anadromous salmonid species in California.

This publication, Calaveras Fish Migration Barriers Assessment Report, is one of those actions. The Department in cooperation with Stockton East Water District and with assistance from the Department of Fish and Game, NOAA’s National Marine Fisheries Service, and US Fish and Wildlife Service produced this document to be used for improving access into the lower Calaveras River for migrating seaward rainbow trout (Oncorhynchus mykiss) and Chinook salmon (Oncorhynchus tshawytscha).

This publication provides an inventory and evaluation of barriers on the Calaveras River system—it’s confluence with the San Joaquin River to New Hogan Dam, the Mormon Slough flood control channel, and the Stockton Diverting Canal. Numerous low flow road crossings, flashboard dams, and other structures exist in the Calaveras River and Mormon Slough that impede fish migration. The largest structure is Bellota Weir. The screening of the diversion and development of a permanent fish ladder at Bellota Weir are being addressed by Stockton East Water District. The results of this report will be used in conjunction with salmon and migratory rainbow trout life history data to identify and prioritize potential fish passage improvement projects to assist in the restoration of habitat and migratory pathways in the Calaveras River system.

The information that this report provides will promote the establishment of additional studies, programs, and projects, leading to cooperative efforts to improve listed and non-listed anadromous fish populations in the Calaveras River and Bay-Delta ecosystem.

Mark W. Cowin
Deputy Director
Regional Water Planning and Management
Acknowledgments

Many individuals and organizations contributed significant time, expertise, and energy to the Calaveras River Fish Migration Barriers Assessment Report. Collection and review of existing reports and databases, aerial photographs, topographic maps, website links, and personal interviews and conversations were conducted. The Fish Passage Improvement Program is grateful to many including:

Calaveras County Water District
 James Cornelius

Department of Water Resources
 DPLA Headquarters– Margie Caisley, Debbie Carlisle, Dave Ching, Allan Davis, Varda Disho, Mike Durant, Ted Frink, Gretchen Goettl, Mike Hendrick, James Joelson, Derick Louie, Tracy Middleton, Leslie Pierce, Carole Rains, Bonnie Ross, and Marilee Talley
 San Joaquin District– Kevin Faulkenberry, Robert Lampa, Paul Romero, and Byron Willems

Department of Fish and Game
 Ian Drury, George Edwards, George Heise, and Katie Perry

Fishery Foundation
 Trevor Kennedy

NOAA’s National Marine Fisheries Service
 Jeff McLain, Erin Strange, and Steve Thomas

SP Cramer & Associates
 Jim Inman, Andrea Fuller, and Michele Simpson

Stockton East Water District
 Kevin Kauffman, Andres Lozano, Jeanette Thomas, and John Yoshimura

US Army Corps of Engineers
 Phil Holcomb

US Fish and Wildlife Service
 J.D. Wikert
Executive Summary

Artificial structures play a major role in reducing Calaveras River’s productivity as a migrating seaward rainbow trout (*Oncorhynchus mykiss*) and Chinook salmon (*Oncorhynchus tshawytscha*) fishery. The river is in the range of historical and essential fish habitat for fall-run Chinook salmon and part of the historical distribution of Central Valley rainbow trout. In cooperation with Stockton East Water District, the Department of Water Resources’ Fish Passage Improvement Program studied and assessed the physical and hydraulic conditions of 97 artificial structures in the Calaveras River from New Hogan Dam downstream to the confluence with the San Joaquin River.

These structures are low-flow road crossings with culverts, low-flow road crossings without culverts, bridges, permanent dams and weirs, and flashboard dams with the flashboards removed. Each structure was evaluated for fish passage and scored on its potential as a barrier to fish passage. Possible scores ranged from 0 to 7, with 7 designating the greatest potential to impair fish passage. Clements Road Flashboard Dam on the Calaveras River was the only structure to score 7. Forty-nine structures received a score of 0; all of them are bridges that have no apron or riprap. A ranking of 0 does not guarantee passage; it only indicates the structure has similar passage performance to normal channel cross sections.

The seasonal flashboard dams were also evaluated with their flashboards installed. A revised scoring system was developed to incorporate the unique characteristics of these structures. The possible scores ranged from 0 to 9, with 9 designating the greatest potential to impair fish passage. Cherryland, Panella, Lavaggi, McLean, Prato, and Clements dams all received 9 points. Murphy Flashboard Dam had the lowest score of 3 points.

Seventeen structures were selected to be modeled using HEC-RAS, the US Army Corps of Engineers one-dimensional open channel flow model. These structures were selected because they are representative of the different structure types and are the most severe in regard to impaired fish passage. The model allowed the calculation of the percentage of time that adult and juvenile fish can pass through a structure during their migration period. Clements Road Flashboard Dam was the most severe, allowing *O. tshawytscha* and *O. mykiss* passage only 2% and 5% of their migration periods, respectively. Additionally, juveniles only have passage during 15% of their migration period. None of the 17 structures allowed 100% passage during the adult Chinook, *O. mykiss*, or juvenile migration periods. This implies that all 97 structures on Calaveras River, Mormon Slough, and Stockton Diverting Canal represented by the modeled structures are likely to be impassable at some point during each migration season. Riprap was often the feature that had the greatest impact on fish passage at modeled structures, indicating that the use of riprap should be eliminated at structures and in the channel where possible.

To increase the Calaveras River’s productivity as an *O. tshawytscha* and *O. mykiss* fishery, many structures on the Calaveras River system must be retrofitted to allow passage for adult and juvenile salmonids. Both temporary and permanent modifications are needed to prevent further decline in fish populations. This report provides a basis for various temporary and permanent structure solutions to the impaired fish passage these structures create. Such solutions are being developed on a preliminary or conceptual level for eight of the structures identified in this report.
Table of Contents

Acknowledgments .. vi

Executive Summary ... vii

Chapter 1. Introduction ... 1-1
Reports and Study .. 1-1
Assessments and Appendices .. 1-1
 Hydrology and Water Supply Operation ... 1-2
 Biological Conditions .. 1-2
 Fish Passage Evaluation Methodology and Results .. 1-2
 Assessment Findings ... 1-3
Selected Preliminary Designs .. 1-4

Chapter 2. Existing Hydrologic and Water Supply Operations .. 2-1
Instream structures .. 2-1
Basin Hydrology .. 2-2
New Hogan Dam and Flood Control Operations ... 2-4
Permit Restraints .. 2-4
Stockton East Water District .. 2-4
 SEWD Water Supply Allocation ... 2-5
 SEWD Irrigation Diversions .. 2-5
Agricultural Diversions ... 2-6
 SEWD Municipal and Industrial Diversion Structure .. 2-7
 Calaveras Downstream of the Calaveras Headworks ... 2-7
 Mormon Slough/Stockton Diverting Canal ... 2-7
 Potter Creek ... 2-8
 Mosher Creek .. 2-8

Chapter 3. Biological Conditions ... 3-1
Fish Populations .. 3-1
 Calaveras River Fish Populations .. 3-1
 Salmonid Biology Background ... 3-1
 Calaveras River Salmonid Populations .. 3-2
 Salmonid Migration Timing for the Calaveras River .. 3-3
Habitat Conditions .. 3-4
 Riverine Habitat Conditions .. 3-4
 Calaveras River .. 3-4
 Mormon Slough .. 3-4
 Temperature .. 3-6
 Riparian Vegetation .. 3-6
 Fluvial Geomorphology ... 3-7
 Water Quality ... 3-8
Appendix A – Site Descriptions ... A-1

Calaveras River downstream of Confluence with the Stockton Diverting Canal A-1
 Interstate 5 Bridges .. A-1
 Pershing Avenue Bridge .. A-4
 Pacific Avenue Bridge, Northbound ... A-7
 Pacific Avenue Bridge, Southbound ... A-9
 Concrete Remnant Structure Upstream Of Pacific Avenue Bridge A-12
 El Dorado Street Bridge .. A-13
 Railroad Crossing No. 2 .. A-16
 West Lane Bridge .. A-20
 Pedestrian Bridge Downstream of Railroad Crossing No. 1 A-23
 Railroad Crossing No. 1 .. A-26

Calaveras River between the Calaveras Headworks and the Confluence with the
Stockton Diverting Canal .. A-29
 Old Wooden Bridge .. A-29
 Gotelli Low-flow Road Crossing (River Mile 6.2) A-33
 McAllen Road Bridge .. A-35
 McAllen Flashboard Dam .. A-39
 Highway 99 Pedestrian Bridge ... A-43
 Highway 99 Bridge, Northbound .. A-46
 Highway 99 Bridge, Southbound ... A-49
 Cherryland Flashboard Dam .. A-52
 Railroad Crossing near Leonardini Road .. A-57
 Old DWR Gage Weir ... A-59
 Solari Ranch Road Bridge ... A-61
 Solari Ranch Flashboard Dam ... A-65
 Ashley Lane Bridge ... A-68
 Alpine Road Bridge .. A-71
 Pezzi Flashboard Dam ... A-74
 Pezzi Road Bridge .. A-78
 Murphy Flashboard Dam .. A-81
 Highway 88 Bridge ... A-85
 Eight Mile Road Bridge ... A-88
 Eight Mile Flashboard Dam .. A-90
 Jack Tone Road Bridge .. A-93
 Jack Tone Footbridge ... A-95
 Tully Road Bridge ... A-97
 Tully Flashboard Dam ... A-99
 Rosa Bridge .. A-102
 Duncan Road Bridge (private) ... A-104
 Messick Road Bridge .. A-106
 Guernsey Road Bridge .. A-108
 Clements Road Flashboard Dam and Bridge .. A-110
 Botsford Bridge #1 ... A-114
Botsford Bridge #2 ... A-116
Houston Bridge .. A-118
DeMartini Lane Bridge .. A-120
DeMartini Wood Bridge ... A-122
Chesnut Hill Road Bridge .. A-124
Podesta Bridge .. A-125
Pelota Bridge ... A-127
Gotelli #1 Flashboard Dam .. A-129
Gotelli #1 Bridge .. A-131
Gotelli #2 Bridge .. A-133
Highway 26 Bridge ... A-135
Calaveras Headworks ... A-137
Upstream of Calaveras Headworks to New Hogan Dam on Calaveras River A-141
McGurk Earth Dam ... A-141
McGurk Low-flow Road Crossing ... A-143
Wilson Low-flow Road Crossing .. A-146
Old Dog Ranch Low-flow Road Crossing A-149
Old Dog Ranch Bridge .. A-152
Shelton Road Bridge .. A-154
Deteriorated Low-flow Road Crossing A-156
Gotelli Low-flow Road Crossing (River Mile 35.3) A-157
Rubble Dam upstream of Bellota Weir A-159
New Hogan Dam Road Bridge .. A-160
Stockton Diverting Canal and Mormon Slough A-164
Wooden Bridge West of Wilson Way A-164
Wilson Way Bridge .. A-165
Central California Traction Railroad Bridge (CCTRR) A-166
Cherokee Road Bridge ... A-170
Waterloo Road Bridge .. A-171
Highway 99 Northbound and Southbound Bridges (Stockton Diverting Canal) A-172
Budiselich Dam ... A-174
Stockton Terminal and Eastern Railroad Bridge A-181
Highway 26 Bridge (Stockton Diverting Canal) A-183
Southern Pacific Railroad Bridge .. A-183
Southern Pacific Railroad Bridge ... A-184
Main Street Flashboard Dam ... A-185
Panella Flashboard Dam ... A-189
Bridge Upstream of Panella Flashboard Dam A-192
Caprini Low-flow Road Crossing ... A-193
Lavaggi Flashboard Dam ... A-198
Jack Tone Road Bridge (Mormon Slough) A-201
Hogan Low-flow Road Crossing .. A-203
McCLean Low-flow Road Crossing ... A-208
Fujinaka Low-flow Road Crossing ... A-211
Copperopolis Road Bridge ... A-213
Prato Flashboard Dam .. A-214
Mormon Slough Railroad Bridge ... A-217
Duncan Road Bridge .. A-222
Piazza Flashboard Dam .. A-223
Milton Road Bridge .. A-226
Bonomo Flashboard Dam .. A-227
Concrete Slabs (Remnant Structure) ... A-230
Hosie Low-flow Road Crossing .. A-231
Hosie Flashboard Dam .. A-236
Flood Road Bridge .. A-239
Avansino Street Flashboard Dam .. A-240
Fine Road Bridge ... A-243
Fine Road Flashboard Dam .. A-244
Highway 26 Flashboard Dam ... A-248
Watkins Low-flow Road Crossing .. A-250
Escalon Bellota Bridge ... A-256
Bellota Weir .. A-257
 Fish Ladder Optimal and Actual Operating Conditions A-257
 Denil Application at Bellota Weir ... A-258

Appendix B. Data Sheets for Ranking .. B-1
Bridges and Railroad Crossing ... B-2
Culverts ... B-3
Low-flow Crossings .. B-4
Permanent Dam and Weir .. B-5
Seasonal Flashboard Dams .. B-6
Flashboard Dam Base ... B-7

Appendix C. Details of Flow Duration Analyses C-1
Calaveras River Upstream of Bellota .. C-1
Calaveras River Downstream of the Headworks C-3
Mormon Slough Upstream of Potter Creek C-5
Stockton Diverting Canal and Mormon Slough Downstream of Potter Creek C-8

Appendix D. Hydraulic Model Results ... D-1
Introduction .. D-1
Goals and Objectives ... D-2
Overview of Hydraulic Models .. D-2
Hydraulic Model Calibration ... D-3
Criteria Used to Evaluate Structure Performance D-4
Hydraulic Model Results ... D-5
Analysis of Structure Performance ... D-5
2004 Modeled Structures .. D-6
 Central California Traction Railroad Bridge D-6
 Budiselich Flashboard Dam .. D-18
Calaveras River Fish Migration Barriers Assessment Report

Caprini Low-flow Road Crossing ... D-29
Hogan Low-flow Road Crossing ... D-41
Hosie Low-flow Road Crossing ... D-52
Watkins Low-flow Road Crossing ... D-63
Murphy Flashboard Dam .. D-74
Clements Road Flashboard Dam ... D-82

2005 Modeled Structures ... D-93
Lavaggi Flashboard Dam ... D-93
Fujinaka Low-flow Road Crossing ... D-104
Mormon Slough Railroad Bridge ... D-115
Piazza Flashboard Dam ... D-124
Fine Road Bridge .. D-135
Gotelli Low-flow Road Crossing ... D-142
McAllen Road Bridge .. D-155
McAllen Flashboard Dam ... D-166
Cherryland Flashboard Dam ... D-178

Appendix E. Table of Structures with Locations E-1
Acronyms and Abbreviations

af acre-feet

cfs cubic feet per second

DFG California Department of Fish and Game

DO dissolved oxygen

DWR California Department of Water Resources

ESU Evolutionarily Significant Unit

FFC Fish Foundation of California

FPIP Fish Passage Improvement Program

fps feet per second

HEC-RAS Hydrologic Engineering Centers River Analysis System

NMFS National Marine Fisheries Service

SEWD Stockton East Water District

USACE US Army Corps of Engineers

USBR US Bureau of Reclamation

USFWS US Fish and Wildlife Service

USGS US Geological Survey
<table>
<thead>
<tr>
<th>Quantity</th>
<th>To Convert from Metric Unit</th>
<th>To Customary Unit</th>
<th>Multiply Metric Unit By</th>
<th>To Convert to Metric Unit Multiply Customary Unit By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>millimeters (mm)</td>
<td>inches (in)</td>
<td>0.03937</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td>centimeters (cm) for snow depth</td>
<td>inches (in)</td>
<td>0.3937</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>meters (m)</td>
<td>feet (ft)</td>
<td>3.2808</td>
<td>0.3048</td>
<td></td>
</tr>
<tr>
<td>kilometers (km)</td>
<td>miles (mi)</td>
<td>0.62139</td>
<td>1.6093</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>square millimeters (mm²)</td>
<td>square inches (in²)</td>
<td>0.00155</td>
<td>645.16</td>
<td></td>
</tr>
<tr>
<td>square meters (m²)</td>
<td>square feet (ft²)</td>
<td>10.764</td>
<td>0.092903</td>
<td></td>
</tr>
<tr>
<td>hectares (ha)</td>
<td>acres (ac)</td>
<td>2.4710</td>
<td>0.40469</td>
<td></td>
</tr>
<tr>
<td>square kilometers (km²)</td>
<td>square miles (mi²)</td>
<td>0.3861</td>
<td>2.590</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liters (L)</td>
<td>gallons (gal)</td>
<td>0.26417</td>
<td>3.7854</td>
<td></td>
</tr>
<tr>
<td>megaliters (ML)</td>
<td>million gallons (10⁶)</td>
<td>0.26417</td>
<td>3.7854</td>
<td></td>
</tr>
<tr>
<td>cubic meters (m³)</td>
<td>cubic feet (ft³)</td>
<td>35.315</td>
<td>0.028317</td>
<td></td>
</tr>
<tr>
<td>cubic meters (m³)</td>
<td>cubic yards (yd³)</td>
<td>1.308</td>
<td>0.76455</td>
<td></td>
</tr>
<tr>
<td>cubic dekameters (dam³)</td>
<td>acre-feet (ac-ft)</td>
<td>0.8107</td>
<td>1.2335</td>
<td></td>
</tr>
<tr>
<td>cubic meters per second (m³/s)</td>
<td>cubic feet per second (ft³/s)</td>
<td>35.315</td>
<td>0.028317</td>
<td></td>
</tr>
<tr>
<td>liters per minute (L/min)</td>
<td>gallons per minute (gal/min)</td>
<td>0.26417</td>
<td>3.7854</td>
<td></td>
</tr>
<tr>
<td>liters per day (L/day)</td>
<td>gallons per day (gal/day)</td>
<td>0.26417</td>
<td>3.7854</td>
<td></td>
</tr>
<tr>
<td>megaliters per day (ML/day)</td>
<td>million gallons per day (mgd)</td>
<td>0.26417</td>
<td>3.7854</td>
<td></td>
</tr>
<tr>
<td>cubic dekameters per day (dam³/day)</td>
<td>acre-feet per day (ac-ft/day)</td>
<td>0.8107</td>
<td>1.2335</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kilograms (kg)</td>
<td>pounds (lbs)</td>
<td>2.2046</td>
<td>0.45359</td>
<td></td>
</tr>
<tr>
<td>megagrams (Mg)</td>
<td>tons (short, 2,000 lb.)</td>
<td>1.1023</td>
<td>0.90718</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>meters per second (m/s)</td>
<td>feet per second (ft/s)</td>
<td>3.2808</td>
<td>0.3048</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kilowatts (kW)</td>
<td>horsepower (hp)</td>
<td>1.3405</td>
<td>0.746</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kilopascals (kPa)</td>
<td>pounds per square inch (psi)</td>
<td>0.14505</td>
<td>6.8948</td>
<td></td>
</tr>
<tr>
<td>kilopascals (kPa)</td>
<td>feet head of water</td>
<td>0.32456</td>
<td>2.989</td>
<td></td>
</tr>
<tr>
<td>Specific capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liters per minute per meter drawdown</td>
<td>gallons per minute per foot drawdown</td>
<td>0.08052</td>
<td>12.419</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>milligrams per liter (mg/L)</td>
<td>parts per million (ppm)</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>microsiemens per centimeter (µS/cm)</td>
<td>micromhos per centimeter (µmhos/cm)</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>degrees Celsius (°C)</td>
<td>degrees Fahrenheit (°F)</td>
<td>(1.8X°C)+32</td>
<td>0.56(°F-32)</td>
<td></td>
</tr>
</tbody>
</table>