Economic Analysis of Water Supply and Water Quality Benefits

IRWM Round 2

Roger Mann
Lorraine Marsh
Steve Hatchett
Jerry Horner
Each Proposal Must Include

• Cost details for the entire Proposal
• Description of the Proposal’s water supply and water quality benefits by reference to a future without the Proposal
• Quantified estimates of physical benefits, if possible
• Economic benefits analysis, if possible
Required Economic Assumptions

• Must evaluate as a stand-alone proposal
• Include all associated costs
• Not just grant-funded portion
• Benefit-Cost Assumptions
 – Use 50-year analysis period, unless justification provided.
 – Use 6 percent to discount future costs, benefits
 – Show all costs and benefits in year 2006 dollars
 – Real costs or benefits can trend over time
 – Planning horizon analysis if appropriate
Why Use Planning Horizon Annual Analysis?

• Tables are provided for Planning Horizon Annual Analysis
• Average annual values could be used if:
 – Over planning horizon, expected benefits are fairly uniform or random variation due to hydrology (no trend), AND
 – O&M and replacement costs are fairly uniform or random, AND
 – All capital costs incurred up front (not staged)
 – Then, for a 50-year project, NPV of annual benefits and O&M costs is 15.76 times the annual value
• Planning horizon annual analysis is appropriate if capital costs are staged, or if there is a significant trend in benefits or O&M costs over project life
Expected yield is delayed or shows a trend over time, so benefits are delayed or show a trend. Capital cost does not all occur in year zero, and O&M costs are delayed or show a trend.

<table>
<thead>
<tr>
<th>Year/row</th>
<th>AF Yield</th>
<th>Yield</th>
<th>Capital Cost</th>
<th>O&M Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$0</td>
<td>$100,000</td>
<td>$0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>$400</td>
<td>$150,000</td>
<td>$4</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>$2,000</td>
<td>$0</td>
<td>$20</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>$4,000</td>
<td>$0</td>
<td>$40</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>$8,000</td>
<td>$0</td>
<td>$80</td>
</tr>
<tr>
<td>etc</td>
<td>etc</td>
<td>etc</td>
<td>etc</td>
<td>etc</td>
</tr>
<tr>
<td>49</td>
<td>100</td>
<td>$20,000</td>
<td>$0</td>
<td>$200</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>$20,000</td>
<td>$0</td>
<td>$200</td>
</tr>
</tbody>
</table>
Costs to include

- All costs must be included regardless of who pays
- All capital, O&M, and future replacement
- Economic costs include opportunity costs of any resources (land, volunteer labor) committed to the project even if they were purchased in the past
- Opportunity cost is the market value of the resource now
Benefits and Cost Savings

• Economic benefits are 1) the value of water quality or quantity improvements or 2) cost savings, both relative to without-proposal

• Count 1) when
 – Without proposal, no other project would be implemented
 – Benefits are achieved only with the proposal
 – The effect of the proposal is to achieve a physical quality or supply benefit that would not otherwise be obtained

• Count 2) cost savings when:
 – Without proposal, some other project would be implemented instead
 – Benefits are achieved with either proposal or project
 – The effect of the proposal is to avoid a cost
Benefits Hints

• For water supply, usually cost savings. If there is no supply alternative, might claim reduced shortage cost
• Economic impacts such as jobs or income created in construction are not benefits
• **Do not double count**
• Count only one type of benefit or cost savings for each unit of water supply produced
• Can count different types for different conditions
 – Hydrologic conditions: wet year, reduce purchases, dry year, reduce shortage
 – Planning horizon: short run, improve quality, long-run, avoid a future project
Documenting Cost Savings and Benefits

- Describe what would happen (especially costs) in the future without the proposal
- Describe how proposal will be operated to obtain benefits claimed
- Document benefits thoroughly, including future conditions without and with the proposal
 - Past supply planning documents, Board minutes, land use plans
 - Make any past documentation of physical or economic benefits analysis available
Benefits/Cost Savings Tables for Planning Horizon Analysis

• Unit benefit (Table 12)
 – Water sales revenues, only if real supply increase,
 – Avoided water supply purchases, or
 – Benefit or cost savings per unit salinity

• Cost of future projects avoided (Table 13)
 – water supply project
 – water quality project

• Other (Table 14)
 – secondary studies

NOTE: Benefit estimates must realistically reflect what the agency would actually do in absence of proposal
Water Quality Benefits

• Link Project Hydrology to Receiving Water Body
• Identify Water Quality Standards
 – http://www.waterboards.ca.gov/
 – Regional Board
 – Water Quality Control Plan (Basin Plan)
 – Basin Plan Documents
 – Section 3. Water Quality Objectives (standards)
<table>
<thead>
<tr>
<th>Waterbody</th>
<th>Specific Conductance (micromhos) @ 77°F</th>
<th>Total Dissolved Solids (mg/l)</th>
<th>Dissolved Oxygen (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90% 50% Upper Limit</td>
<td>90% 50% Upper Limit</td>
<td>90% 50% Lower Limit</td>
</tr>
<tr>
<td>Lost River HA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear Lake Reservoir</td>
<td>300 200</td>
<td></td>
<td>5.0 8.0</td>
</tr>
<tr>
<td>& Upper Lost River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Lost River</td>
<td>1000 700</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Other Streams</td>
<td>250 150</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Tule Lake</td>
<td>1300 900</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Lower Klamath Lake</td>
<td>1150 850</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Groundwaters 4</td>
<td>1100 500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimate

- Change in Flow
- Reduction in Concentration
- Reduction In Loading
 - Units Per Time Period (X tons of sediment per day)
Water Quality Economic Quantification

- Basin Plan Beneficial Uses (Section 2)

- Water Supply
 - MUN Municipal and Domestic Supply
 - AGR Agricultural Supply
 - IND Industrial Service Supply
 - PRO Industrial Process Supply
 - GWR Groundwater Recharge
 - FRSH Freshwater Replenishment
 - NAV Navigation
 - POW Hydropower Generation
• Recreation
 – REC-1 Water Contact Recreation
 – REC-2 Non-Contact Water Recreation

• Habitat
 – Comm Commercial and Sport Fishing
 – WARM Warm Freshwater Habitat
 – COLD Cold Freshwater Habitat
 – ASBS Preservation of Areas of Special Biological Significance
 – SAL Inland Saline Water Habitat
 – WILD Wildlife Habitat
 – RARE Rare, Threatened, or Endangered Species
 – MAR Marine Habitat
 – MIGR Migration of Aquatic Organisms
 – SPWN Spawning, Reproduction, and/or Early Development
 – SHELL Shellfish Harvesting
 – EST Estuarine Habitat
 – AQUA Aquaculture
• North Coast Region Beneficial Use Designations
 – Wetland
 • WET Wetland Habitat
 • WQE Water Quality Enhancement
 • FLD Flood Peak Attenuation/ Flood Water Storage
 – Traditional and Cultural Uses of Water
 • CUL Native American Culture
 • FISH Subsistence Fishing
<table>
<thead>
<tr>
<th>HU/HA/HSA</th>
<th>HYDROLOGIC UNIT/AREA/SUBUNIT/DRAINAGE FEATURE</th>
<th>MUN</th>
<th>AGR</th>
<th>IND</th>
<th>PRO</th>
<th>GWR</th>
<th>FRSH</th>
<th>NAV</th>
<th>POW</th>
<th>REC1</th>
<th>REC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.00</td>
<td>Winchuck River Hydrologic Unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Winchuck River</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>102.00</td>
<td>Rogue River Hydrologic Unit</td>
<td></td>
</tr>
<tr>
<td>102.20</td>
<td>Illinois River Hydrologic Area</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>102.30</td>
<td>Applegate River Hydrologic Area</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>103.00</td>
<td>Smith River Hydrologic Unit</td>
<td></td>
</tr>
<tr>
<td>103.10</td>
<td>Lower Smith River Hydrologic Area</td>
<td></td>
</tr>
<tr>
<td>103.11</td>
<td>Smith River Plain Hydrologic Subarea</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>Lake Talawa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lake Earl</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crescent City Harbor</td>
<td></td>
</tr>
<tr>
<td>103.12</td>
<td>Rowdy Creek Hydrologic Subarea</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>103.13</td>
<td>Mill Creek Hydrologic Subarea</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>103.20</td>
<td>South Fork Smith River Hydrologic Area</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>103.30</td>
<td>Middle Fork Smith River Hydrologic Area</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>103.40</td>
<td>North Fork Smith River Hydrologic Area</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>103.50</td>
<td>Wilson Creek Hydrologic Area</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>
Non-Market Values (Habitat, Recreation, etc.)

– National Ocean Economics Program
 • Non-Market Valuation Studies Database

– Beneficial Use Value Calculator Database (BUVC)
 • Over 3,000 Non-Market Values
 • Sorted by Beneficial Use
Scoring

- The minimum score is 1 point.
- The remaining 4 points scored based on two criteria:
 - NET economic benefits
 - Quality of the economic analysis and documentation
 - Unsubstantiated, deceptive, poor quality, or poorly documented economic analysis can result in the score being reduced.
 - Exceptional documentation can increase score.
Other Expected Benefits

• Types could include:
 – Ecosystem Restoration
 – Flood Control
 – Recreation and Public Access
 – Power Cost Savings or Power Production
 – Other Environmental Benefits

• Same economic principles apply