Rising abundance of largemouth bass in the littoral zone of Sacramento – San Joaquin Delta: the role of *Egeria densa*

J. Louise Conrad, Kelly L. Weinersmith, Matthew J. Young, Denise de Carion, Patrick Crain, David J. Harris, Maud C. Ferrari, Erin Hestir, Maria Santos, Susan Ustin, Peter B. Moyle, Andrew Sih

IEP Workshop, California State University: May 26, 2010
...On the rise

- **HOW** is the population changing?
 - Size structure?

- **WHAT** favors abundance?
 - Increased submerged aquatic vegetation (SAV)?

- **DIET??**
Size distributions between years: April of ‘95, ‘02, ‘09

Average CPUE +/- SE

Size Class (FL in mm):
- 50-100
- 101-150
- 151-200
- 201-250
- 251-300
- 301-350
- 351-400
- 401-450
- 451-500
- >500

Graph showing size distributions for years 1995, 2002, and 2009.
Bimonthly fish & vegetation surveys at 33 sites since October 2008

- SAV biomass by species
- Water quality

Each Point:

>175mm FL
Submerged Aquatic Vegetation (SAV)

- *Egeria densa*
- *Potamogeton crispus*
- *Ceratophyllum demersum*
- *Myriophyllum spicatum*

Graph showing the average biomass of *Egeria densa* and other spp. from October to April.
Does SAV biomass help explain largemouth abundance?

- Small bass (≤ 125mm) vs. Larger bass (> 125mm)

- Generalized linear mixed models (GLMMs)

- Variables:
 - Average SAV biomass
 - Conductivity
 - Temperature
 - Distance to shore
 - Secchi depth

- Compare AIC between models
Linear Models

<table>
<thead>
<tr>
<th></th>
<th>Juveniles (≤ 125mm)</th>
<th>Adults (>125 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ AIC</td>
<td>Effect</td>
</tr>
<tr>
<td>1</td>
<td>-12.3</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>-1.5</td>
<td>ns</td>
</tr>
<tr>
<td>3</td>
<td>-5.6</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>-0.8</td>
<td>ns</td>
</tr>
<tr>
<td>5</td>
<td>-1.0</td>
<td>+</td>
</tr>
</tbody>
</table>

Δ AIC = Reduction in AIC from previous model

Effect = Direction of effect in **best model**.
1. Both life stages have strong INITIAL response to SAV
2. Adults need a lot LESS SAV before their density reaches a plateau
From the field to the lab:

1. Does *Egeria* biomass density affect WHERE adults feed?
 – Prey choice?

2. Additional effects of turbidity?

<table>
<thead>
<tr>
<th>12 Replicates Each Combination:</th>
<th>Egeria Biomass Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>Low</td>
</tr>
<tr>
<td>Clear</td>
<td></td>
</tr>
<tr>
<td>Turbid</td>
<td></td>
</tr>
</tbody>
</table>
Diet Composition in the Field: October 2008 – August 2009

Index of Relative Importance

- ≤ 125 mm (n = 648)
- > 125 mm (n = 676)
Conclusions and Upcoming Work

• *Egeria densa* promotes bass abundance
 – Juveniles exhibit a stronger response than adults
 – Mescosom studies: turbidity more important to feeding success than *Egeria* density when vegetation is patchy

• Diet sample analyses indicate that nearly all prey come from nearshore habitats

• Continue surveys through October 2010
 – Add new sites in the North Delta

• Conceptual model for the nearshore
The big picture: the full nearshore assemblage

Catfish
Alien Cyprinids
Native Residents

Average CPUE +/ - SE

1980-1983
1995, 97, 99
2001-2003
2008-2010
Future Work: Building a conceptual model for the nearshore

Abiotic Factors
- Temperature
- Turbidity
- Conductivity
- Distance to Shore
- Outflow

SAV Biomass

Inverts

Juvenile Fish (including Juvenile LMB)

Adult LMB
Thanks to...

Project Sponsor: Interagency Ecological Program

Electrofishing Vessel: California Department of Fish & Game
Marty Gingras, Curtis Hagen

Diet Sample Analysis
Talene Baghdassarian
Andrew Bibian
Bryn Evans

Modeling: Richard McElreath, UCD

Mesocosms
Lynn Ranaker
Joan Lindberg, FCCL
Luke Ellison, FCCL
Paul Lutes, CABA
Erik Hallen, CABA