

STATE OF CALIFORNIA DEPARTMENT OF WATER RESOURCES OROVILLE DAM SAFETY COMPREHENSIVE NEEDS ASSESSMENT

CNA Tasks 1, 2 & 6 Work Progress Briefing

Oroville Dam Safety Ad Hoc Committee – Meeting No. 3 January 10, 2019

750

Task 1 – Spillways

Swit

December 3, 2018

Objectives, Constraints

Task 1 Need Statement

What additional enhancements for spillway reliability, redundancy, and resiliency are needed at Oroville Dam?

Outlet Portals

Area Control Center-

<u>Objective T1-1</u> – Determine what enhancements should be added to <u>FCO</u> <u>Headworks and Chute</u> to provide reliability and resiliency for spillway releases.

<u>Objective T1-2</u> – Determine what new features or facilities should be added to provide redundancy to the <u>FCO</u> <u>Headworks and Chute</u> for spillway releases.

<u>Objective T1-3</u> – Determine what new features or facilities should be added to provide reliability and resiliency to the <u>Emergency Spillway monoliths</u> for large spillway discharges.

Constraints

- Physical capacity limits of Existing Facilities
- Reliability of Existing Facilities
- Regulatory requirements
- Additional physical constraints:
 - Flood Inflows
 - Channel capacity
 - o Geology
 - o Scour potential
 - Existing facilities
 - Operations
 - Fishery impacts

Objectives, Constraints

Task 1 Need Statement

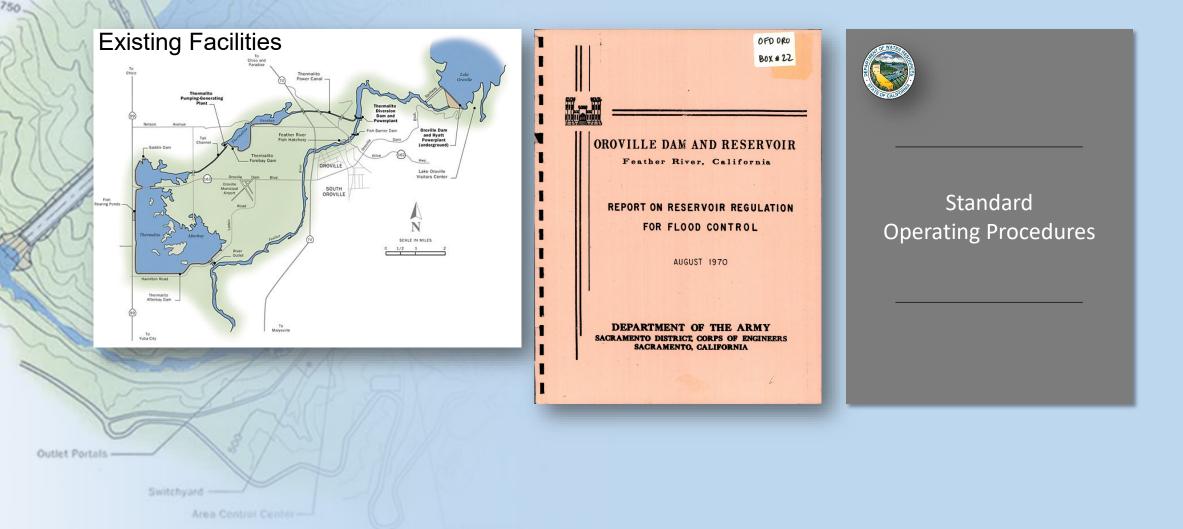
What additional enhancements for spillway reliability, redundancy, and resiliency are needed at Oroville Dam?

Outlet Portals

Area Control Center

<u>Objective T1-4</u> – Determine what new features or facilities should be added to the <u>Emergency Spillway</u> to provide reliability, and resiliency to the unlined spillway channel downstream of the Secant Pile Wall in order to preserve downstream conveyance.

<u>**Objective T1-5**</u> – Determine what new features or facilities should be added to the <u>Emergency Spillway</u> to provide reliability, and resiliency to the unlined spillway channel downstream of the Secant Pile Wall in order to protect the Hyatt PP from flooding.


<u>Objective T1-6</u> – Determine what new features or facilities should be added Oroville Dam and its spillways (e.g. raising embankment crest, widening Emergency Spillway, lowering crest of Emergency Spillway) to provide reliability, and resiliency in passing current and future Inflow Design Floods.

Constraints

- Climate change
- Tolerable risk
- Allowable/tolerable damage to Oroville spillways
- Damage to Downstream SWP facilities
- Downstream levee
 capacities

Task 2 – Operations Needs Assessment

Objectives, Constraints

Task 2 Need Statement

What candidate flood operations measures are appropriate for Oroville Dam? <u>**Objective T2-1**</u> – Incorporate relevant physical changes since 1970 WCM development in updated flood operations measures.

<u>Objective T2-2</u> – Assess performance of operational measures for broad range of flood conditions to support risk-informed decision making.

<u>**Objective T2-3**</u> – Develop candidate flood operation plan acceptable to USACE.

Objective T2-4 – Develop strategy that is sufficiently resilient and aligned with USACE guidelines to accommodate potential changes to climate.

<u>**Objective T2-5**</u> – Develop operation plan that integrates with forecast-coordinated operation (F-CO) system created by DWR and Yuba Water Agency (YWA).

Constraints

- Existing infrastructure.
- Infrastructure modification measures.
- Availability of flexible reservoir-river system models.
- Inflow event probability information.
- USACE decision-making at local (Sacramento District) and regional (South Pacific Division) and national (HQUSACE) offices.
- Future climate changes are not known with certainty.
- Multi-agency coordination and collaboration between DWR, USACE, YWA, National Weather Service, California Nevada River Forecast Center (NWS CNRFC), and leading experts in the field of forecast based flood operations.

750

Task 6 – Instrumentation and Monitoring

Task 6 Objectives, Constraints

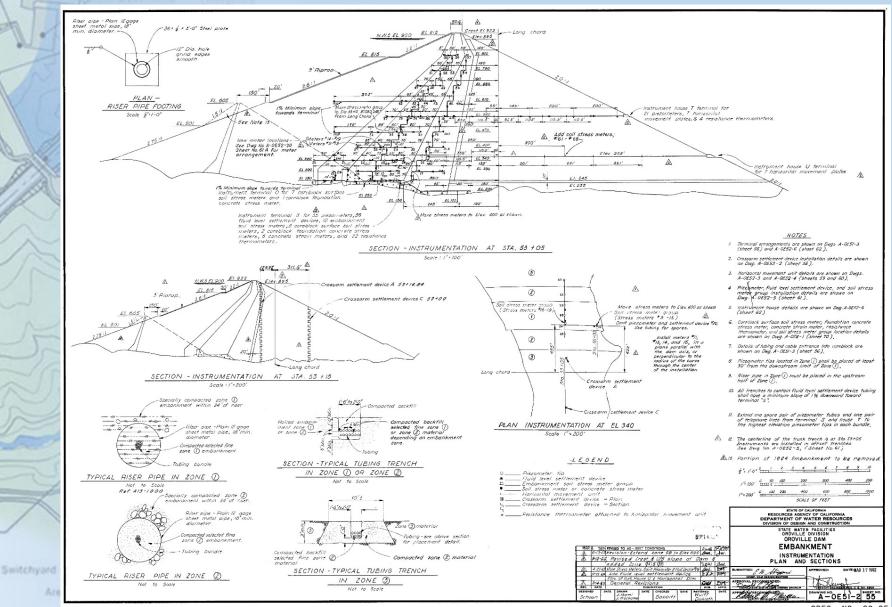
Task 6 Need Statement

What performance instrumentation and monitoring measures are needed for dam safety, reliability, redundancy and resiliency? <u>Objective T6-1</u> – Review instrumentation and monitoring equipment and procedures from preconstruction through present day. Validate previous conclusions.

<u>**Objective T6-2**</u> – Identify opportunities for improvements to instrumentation that will support dam safety and improve regulatory compliance.

Constraints

- Existing instrumentation.
- Avoid damage to existing structures.
- Physical inaccessibility.
- Instrument reliability and life.
- Technology.
- Data review protocols and processes.
- Reporting and response.



Instrumentation Overview

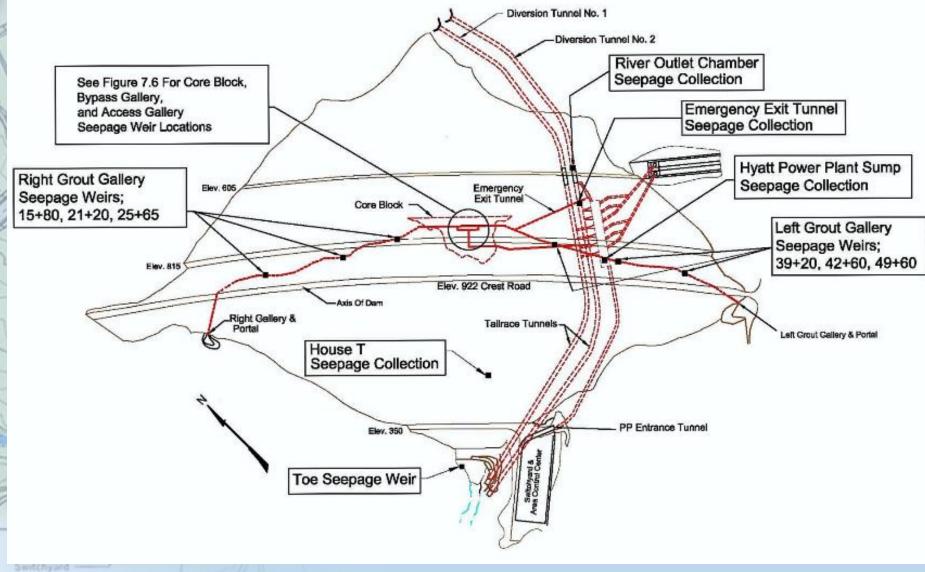
- Piezometers
- Seepage Instruments
- Survey Monuments
- Seismic Instruments

Outlet Portals

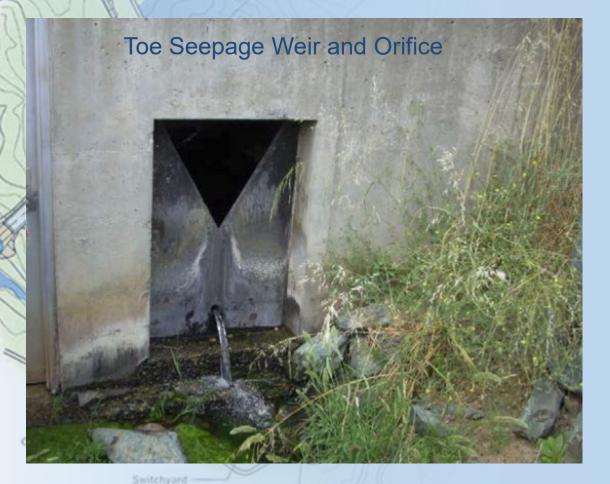
OFCAL

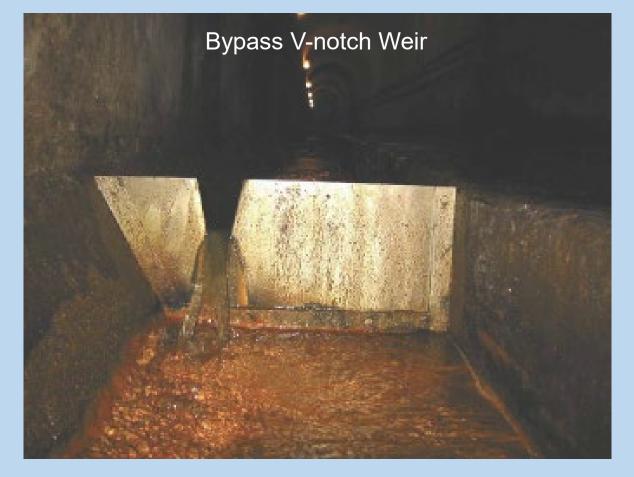
Outlet Portals -

baod.


750

Outlet Portals -----


750

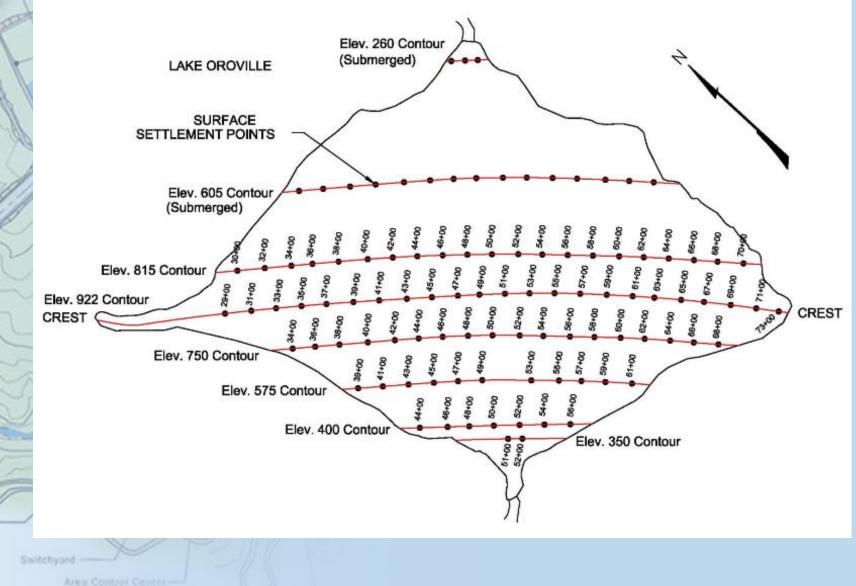

Seepage Collection Locations

Seepage Collection Locations

Grout Gallery - Seepage

Intermediate Weirs Are Installed in Right and Left Grout Galleries

Outlet Portals



Outlet Portals -

bad

750

Survey Monuments

750

Seismic Instruments

Outlet Portals -

Potential Failure Modes - Summary

Part 12D - 2014

	PFM	STRUCTURE	LOADING TYPE	BRIEF DESCRIPTION	CATEGORY
	F1	FCO	Hydrologic	Uplift Pressure below the FCO during the PMF Leads to a Stability Issue of the FCO Structure	111
	F2	Spillway/ Ogee	Hydrologic	Uplift Pressure below the Emergency Spillway Weir during PMF Leads to a Stability Issue of the Emergency Spillway Structure	111
	F3	Dam/ FCO	Static/ Hydrologic	Breach near Dam Crest under High Reservoir Conditions due to Erosion of Fill at the Right Abutment Contact with FCO Structure	II
	S1	Dam	Static	Internal Erosion of Fines from Dam Core Zone 1 Exiting into Transition Zone 2 due to Imperfect Filter Compatibility	II

Outlet Portals -

bad

750

PFM - Summary

DEM	CTDUCTUCT		BRISS DECORIDATION	CATEGORY
PFM S2		TYPE	BRIEF DESCRIPTION	CATEGORY
52	Dam	Static	Scour Erosion of Fines Initiating along a Crack in Zone 1 Core and Exiting into	
			Transition Zone 2 due to Imperfect Filter	
			Compatibility	
S3	Dam	Static	Internal Erosion of Fines Initiating and	IV
00	Dam	Static	Progressing along Outside of Broken	1.
			Instrumentation Tubing within Trench that	
			Extends Upstream to Downstream across	
			Zone 1 Core at Dam Sta 53+05, El 540	
E1	Dam	Earthquake	Earthquake Loading during High Reservoir	IV
			Pool Conditions Causes Transverse Crack to	
			Form at Crest of Dam, Leading to Erosion	
			and Breach at the Location of the Crack and	
			Uncontrolled Release of Reservoir Water	
E2	Dam	Earthquake	Earthquake Opens Repaired Cracks or New	IV
			Cracks in the Core Block, Leading to Erosion	
			of Zone 1 Material from the Dam Core into	
			the Gallery and Sump System and	
E3	Dam	Forthquaka	Development of a Void within the Core	111
E3	Dam	Earthquake	Earthquake Occurs during a Wet Period in Which "Green Spot" Area of Left Dam	
			Abutment is Saturated with a Perched	
			Phreatic Condition, Resulting in Downstream	
			Slope Instability	
E4	Dam	Earthquake	Large Earthquake (on the order of the 84th	111
	Dam	Landiquanto	Percentile) on the Cleveland Hills Fault	
			Leads to Deformation and Loss of Freeboard	
			and Overtopping of the Crest of the Dam	
E5	Hyatt	Earthquake	Earthquake Causes Failure of the Slide Gate	111
	Intake		Hoist and Rapid Closure of Hyatt Intake	
			Structure, Which Collapses Penstock due to	
			Negative Pressure and Inability to Make	
			Reservoir Releases through the Plant	
E6	FCO	Earthquake	Earthquake Shaking under Normal Reservoir	1
			Pool Conditions Causes Failure of Corroded	
			Radial Gate Tendons at the FCO Structure,	
			Loss of Two (or More) Gates and	
			Uncontrolled Release of Reservoir down to El 813	
E7	FCO	Earthquake	Seismic Forces due to a Large Earthquake	111
L/	1.00	Lannquare	Damage the FCO Gates and Prevent	
			Opening to Lower Reservoir as Reservoir is	
			Rising, Resulting in Uncontrolled Release	
			over the Emergency Spillway Section	
	Concerning the second second second	~	and a second second	

PFM	STRUCTURE	LOADING TYPE	BRIEF DESCRIPTION	CATEGORY
E8	Emergency Spillway	Earthquake	Earthquake Loading under Normal Reservoir Pool Causes "Debonding" between the Concrete at the Base of the Ogee Weir and the Rock Foundation, Dislodging an Ogee Section Monolith, Resulting in Partial Release of Reservoir to Approximately El 850	Ξ
01	FCO	Operational	Human Error on Entering Gate Opening Setpoint Results in Uncontrolled Release	11
02	FCO	Operational	SCADA Malfunction Results in Uncontrolled Release	11
O3	Powerplant	Operational	Generating Unit Comes out of Block due to Mechanical Failure of Head Cover	Ξ
04	FCO	Operational	Gate in the FCO Fails to Open during Flood Event due to Binding	11
O5	Palermo Tunnel	Operational	Failure of the Palermo Tunnel 30-inch Valve or Upstream Pipe Stub due to Corrosion	11
O6	River Outlet	Operational	Pressure Relief Wall in the River Outlet Blows Out, Resulting in High-Velocity Wind Which Damages Hydraulic Control Lines and Electrical Control Lines	IV

Outlet Portals ----

Switchyard -----

Questions?