The following results of the DSM2 model are included for river electrical conductivity conditions for the following scenarios:

- Baseline Conditions (082624)
- Proposed Project ITP Spring Outflow (091224)

Title	Model Parameter	Table Numbers	Figure Numbers
Sac R ds of Steamboat Slough	Sac_DS_STMBTSL	4L-7-1-1a to 4L-7-1-1c	4L-7-1a to 4L-7-1r
Cache Slough at Ryer Island	CACHE_RYER	4L-7-2-1a to 4L-7-2-1c	4L-7-2a to 4L-7-2r
Sac R ds of Georgiana Slough	RSAC123	4L-7-3-1a to 4L-7-3-1c	4L-7-3a to 4L-7-3r
Sac R at Rio Vista	RSAC101	4L-7-4-1a to 4L-7-4-1c	4L-7-4a to 4L-7-4r
Sac R at Emmaton	RSAC092	4L-7-5-1a to 4L-7-5-1c	4L-7-5a to 4L-7-5r
Sac R at Collinsville	RSAC081	4L-7-6-1a to 4L-7-6-1c	4L-7-6a to 4L-7-6r
Sac R at Mallard Slough	RSAC075	4L-7-7-1a to 4L-7-7-1c	4L-7-7a to 4L-7-7r
Chipps Island North Channel	CHIPS_N_437	4L-7-8-1a to 4L-7-8-1c	4L-7-8a to 4L-7-8r
Chipps Island South Channel	CHIPS_S_442	4L-7-9-1a to 4L-7-9-1c	4L-7-9a to 4L-7-9r
Sac R at Port Chicago	RSAC064	4L-7-10-1a to 4L-7-10-1c	4L-7-10a to 4L-7-10r
SJR at Antioch	RSAN007	4L-7-11-1a to 4L-7-11-1c	4L-7-11a to 4L-7-11r
SJR at Jersey Point	RSAN018	4L-7-12-1a to 4L-7-12-1c	4L-7-12a to 4L-7-12r
SJR at San Andreas	SJR_SAN_ANDREAS	4L-7-13-1a to 4L-7-13-1c	4L-7-13a to 4L-7-13r
SJR at Prisoners Point	RSAN037	4L-7-14-1a to 4L-7-14-1c	4L-7-14a to 4L-7-14r
Old River at Rock Slough	ROLD024	4L-7-15-1a to 4L-7-15-1c	4L-7-15a to 4L-7-15r
Banks Pumping Plant South Delta Exports	CLIFTONCOURT	4L-7-16-1a to 4L-7-16-1c	4L-7-16a to 4L-7-16r
Jones Pumping Plant South Delta Exports	CHDMC006	4L-7-17-1a to 4L-7-17-1c	4L-7-17a to 4L-7-17r
Old River at Highway 4	ROLD034	4L-7-18-1a to 4L-7-18-1c	4L-7-18a to 4L-7-18r
Victoria Canal	CHVCT000	4L-7-19-1a to 4L-7-19-1c	4L-7-19a to 4L-7-19r
Montezuma Slough at Hunter Cut	SLMZU003	4L-7-20-1a to 4L-7-20-1c	4L-7-20a to 4L-7-20r
Montezuma Slough at Beldons Landing	SLMZU011	4L-7-21-1a to 4L-7-21-1c	4L-7-21a to 4L-7-21r
Montezuma Slough at National Steel	SLMZU025	4L-7-22-1a to 4L-7-22-1c	4L-7-22a to 4L-7-22r
Suisun Bay near Ryer	RYC	4L-7-23-1a to 4L-7-23-1c	4L-7-23a to 4L-7-23r
Goodyear Slough Outfall at Naval Fleet	GYS	4L-7-24-1a to 4L-7-24-1c	4L-7-24a to 4L-7-24r
Three Mile Slough	3MILE_SL	4L-7-25-1a to 4L-7-25-1c	4L-7-25a to 4L-7-25r

Report formats:

- Monthly tables comparing two scenarios (exceedance values, long-term average, and average by water year type).
- Monthly pattern charts (long-term average and average by water year type) including all scenarios.
- Monthly exceedance charts (all months) including all scenarios.

Table 4L-7-1-1a. Sacramento River downstream of Steamboat Slough Salinity, BaselineConditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	176	177	178	178	179	178	176	176	176	175	175	175
20% Exceedance	176	177	177	178	179	178	176	176	175	175	175	175
30% Exceedance	176	176	177	177	178	177	176	176	175	175	175	175
40% Exceedance	176	176	177	177	177	177	176	175	175	175	175	175
50% Exceedance	175	176	177	177	177	177	176	175	175	175	175	175
60% Exceedance	175	176	176	176	177	176	176	175	175	175	175	175
70% Exceedance	175	176	176	176	177	176	176	175	175	175	175	175
80% Exceedance	175	176	176	176	176	176	176	175	175	175	175	175
90% Exceedance	175	176	176	176	176	176	175	175	175	175	175	175
Full Simulation Period Average ^a	176	176	177	177	177	177	176	175	175	175	175	175
Wet Water Years (32%)	176	176	176	176	176	176	176	175	175	175	175	175
Above Normal Years (9%)	176	176	177	177	177	176	176	175	175	175	175	175
Below Normal Years (20%)	176	176	177	177	178	177	176	175	175	175	175	175
Dry Water Years (21%)	175	176	177	177	178	177	176	176	175	175	175	175
Critical Water Years (18%)	176	176	177	177	179	178	176	176	176	175	176	175

Table 4L-7-1-1b. Sacramento River downstream of Steamboat Slough Salinity,Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	176	177	178	178	179	178	176	176	176	175	175	176
20% Exceedance	176	177	177	178	179	178	176	176	175	175	175	175
30% Exceedance	176	176	177	177	178	177	176	176	175	175	175	175
40% Exceedance	176	176	177	177	178	177	176	175	175	175	175	175
50% Exceedance	175	176	177	177	177	177	176	175	175	175	175	175
60% Exceedance	175	176	176	176	177	176	176	175	175	175	175	175
70% Exceedance	175	176	176	176	177	176	176	175	175	175	175	175
80% Exceedance	175	176	176	176	176	176	176	175	175	175	175	175
90% Exceedance	175	176	176	176	176	176	175	175	175	175	175	175
Full Simulation Period Average ^a	176	176	177	177	177	177	176	175	175	175	175	175
Wet Water Years (32%)	176	176	176	176	176	176	176	175	175	175	175	175
Above Normal Years (9%)	176	176	177	177	177	176	176	175	175	175	175	175
Below Normal Years (20%)	176	176	177	177	178	177	176	175	175	175	175	175
Dry Water Years (21%)	175	176	177	177	178	177	176	176	175	175	175	175
Critical Water Years (18%)	176	176	177	177	179	178	176	176	176	175	176	175

Table 4L-7-1-1c. Sacramento River downstream of Steamboat Slough Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
20% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
30% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
40% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
50% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
60% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
70% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
80% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
90% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
Full Simulation Period Average ^a	0	0	0	0	0	0	0	0	0	0	0	0
Wet Water Years (32%)	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal Years (9%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal Years (20%)	0	0	0	0	0	0	0	0	0	0	0	0
Dry Water Years (21%)	0	0	0	0	0	0	0	0	0	0	0	0
Critical Water Years (18%)	0	0	0	0	0	0	0	0	0	0	0	0

^a Based on the 100-year simulation period.

 \ast All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

* These results are displayed with water year - year type sorting.

Figure 4L-7-1a. Sacramento River downstream of Steamboat Slough Salinity, Long-Term Average EC

Figure 4L-7-1b. Sacramento River downstream of Steamboat Slough Salinity, Wet Year Average EC

Figure 4L-7-1c. Sacramento River downstream of Steamboat Slough Salinity, Above Normal Year Average EC

Figure 4L-7-1d. Sacramento River downstream of Steamboat Slough Salinity, Below Normal Year Average EC

Figure 4L-7-1e. Sacramento River downstream of Steamboat Slough Salinity, Dry Year Average EC

Figure 4L-7-1f. Sacramento River downstream of Steamboat Slough Salinity, Critical Year Average EC

Figure 4L-7-1g. Sacramento River downstream of Steamboat Slough Salinity, October EC

Figure 4L-7-1h. Sacramento River downstream of Steamboat Slough Salinity, November EC

Figure 4L-7-1i. Sacramento River downstream of Steamboat Slough Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-1j. Sacramento River downstream of Steamboat Slough Salinity, January EC

Figure 4L-7-1k. Sacramento River downstream of Steamboat Slough Salinity, February EC

Figure 4L-7-1I. Sacramento River downstream of Steamboat Slough Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-1m. Sacramento River downstream of Steamboat Slough Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-1n. Sacramento River downstream of Steamboat Slough Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10. Sacramento River downstream of Steamboat Slough Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-1p. Sacramento River downstream of Steamboat Slough Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-1q. Sacramento River downstream of Steamboat Slough Salinity, August EC

Figure 4L-7-1r. Sacramento River downstream of Steamboat Slough Salinity, September EC

Table 4L-7-2-1a. Cache Slough at Ryer Island Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	192	195	195	194	196	195	191	186	189	185	191	187
20% Exceedance	188	191	192	191	194	193	190	184	183	182	186	185
30% Exceedance	185	190	190	190	192	191	188	183	182	180	183	183
40% Exceedance	185	187	188	187	189	189	187	183	182	180	180	182
50% Exceedance	183	185	186	186	187	187	186	182	182	179	180	180
60% Exceedance	181	184	185	185	186	185	184	182	181	179	179	179
70% Exceedance	180	183	184	184	183	182	183	180	180	179	179	179
80% Exceedance	180	181	182	180	181	181	182	179	179	179	179	179
90% Exceedance	179	181	181	179	179	179	180	178	178	179	179	179
Full Simulation Period Average ^a	184	187	187	186	188	187	186	182	182	181	182	182
Wet Water Years (32%)	182	185	184	181	181	181	181	179	179	179	179	179
Above Normal Years (9%)	184	189	188	185	186	184	183	180	180	179	179	179
Below Normal Years (20%)	183	186	188	188	189	187	186	182	182	179	180	181
Dry Water Years (21%)	184	186	188	189	192	191	189	184	182	180	183	183
Critical Water Years (18%)	188	193	192	191	195	195	190	187	189	187	191	188

Table 4L-7-2-1b. Cache Slough at Ryer Island Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	191	195	195	194	196	195	191	186	190	185	189	187
20% Exceedance	188	191	192	191	194	193	190	184	183	182	186	185
30% Exceedance	186	189	189	190	192	191	188	183	182	180	184	184
40% Exceedance	185	187	188	187	189	189	187	183	182	180	181	182
50% Exceedance	183	185	186	186	188	187	186	182	182	179	180	180
60% Exceedance	181	184	185	185	186	185	184	182	181	179	179	179
70% Exceedance	180	183	184	184	183	182	183	180	180	179	179	179
80% Exceedance	180	181	182	180	181	181	182	179	179	179	179	179
90% Exceedance	179	181	181	179	179	179	180	178	178	179	179	179
Full Simulation Period Average ^a	184	187	187	186	188	187	186	182	182	181	182	182
Wet Water Years (32%)	183	185	184	181	181	181	181	179	179	179	179	179
Above Normal Years (9%)	184	189	188	185	186	184	183	180	180	179	179	179
Below Normal Years (20%)	183	186	188	188	189	187	186	182	182	179	180	181
Dry Water Years (21%)	184	186	188	189	192	191	189	184	182	180	184	184
Critical Water Years (18%)	188	192	192	191	195	195	190	187	189	187	190	188

Table 4L-7-2-1c. Cache Slough at Ryer Island Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	0	0	0	0	0	0	0	0	0	0	-2	0
20% Exceedance	0	0	0	0	0	0	0	0	0	0	1	0
30% Exceedance	0	0	0	0	0	0	0	0	0	0	1	1
40% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
50% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
60% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
70% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
80% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
90% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
Full Simulation Period Average ^a	0	0	0	0	0	0	0	0	0	0	0	0
Wet Water Years (32%)	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal Years (9%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal Years (20%)	0	0	0	0	0	0	0	0	0	0	0	0
Dry Water Years (21%)	0	0	0	0	0	0	0	0	0	0	0	0
Critical Water Years (18%)	0	0	0	0	0	0	0	0	0	0	0	0

^a Based on the 100-year simulation period.

 \ast All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-2a. Cache Slough at Ryer Island Salinity, Long-Term Average EC

Figure 4L-7-2b. Cache Slough at Ryer Island Salinity, Wet Year Average EC

Figure 4L-7-2c. Cache Slough at Ryer Island Salinity, Above Normal Year Average EC

Figure 4L-7-2d. Cache Slough at Ryer Island Salinity, Below Normal Year Average EC

Figure 4L-7-2e. Cache Slough at Ryer Island Salinity, Dry Year Average EC

Figure 4L-7-2f. Cache Slough at Ryer Island Salinity, Critical Year Average EC

Figure 4L-7-2g. Cache Slough at Ryer Island Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-2h. Cache Slough at Ryer Island Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-2i. Cache Slough at Ryer Island Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-2j. Cache Slough at Ryer Island Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-2k. Cache Slough at Ryer Island Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-2I. Cache Slough at Ryer Island Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-2m. Cache Slough at Ryer Island Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-2n. Cache Slough at Ryer Island Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-20. Cache Slough at Ryer Island Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-2p. Cache Slough at Ryer Island Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-2q. Cache Slough at Ryer Island Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-2r. Cache Slough at Ryer Island Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-3-1a. Sacramento River downstream of Georgiana Slough Salinity, BaselineConditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	176	177	178	178	180	178	177	176	176	176	176	176
20% Exceedance	176	177	178	178	179	178	176	176	176	175	176	176
30% Exceedance	176	177	177	177	178	177	176	176	176	175	176	176
40% Exceedance	176	176	177	177	178	177	176	176	176	175	175	176
50% Exceedance	176	176	177	177	177	177	176	175	176	175	175	175
60% Exceedance	176	176	177	177	177	176	176	175	175	175	175	175
70% Exceedance	175	176	176	176	177	176	176	175	175	175	175	175
80% Exceedance	175	176	176	176	177	176	176	175	175	175	175	175
90% Exceedance	175	176	176	176	176	176	175	175	175	175	175	175
Full Simulation Period Average ^a	176	176	177	177	178	177	176	175	175	175	175	175
Wet Water Years (32%)	176	176	177	177	177	176	176	175	175	175	175	175
Above Normal Years (9%)	176	177	177	177	177	176	176	175	175	175	175	175
Below Normal Years (20%)	176	176	177	177	178	177	176	175	176	175	175	175
Dry Water Years (21%)	176	176	177	177	178	177	176	176	176	175	176	176
Critical Water Years (18%)	176	176	177	178	179	178	176	176	176	176	176	176

Table 4L-7-3-1b. Sacramento River downstream of Georgiana Slough Salinity,Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	176	177	178	178	180	178	177	176	176	176	176	176
20% Exceedance	176	177	178	178	179	178	176	176	176	175	176	176
30% Exceedance	176	177	177	177	178	177	176	176	176	175	176	176
40% Exceedance	176	176	177	177	178	177	176	176	176	175	175	176
50% Exceedance	176	176	177	177	177	177	176	175	176	175	175	175
60% Exceedance	176	176	177	177	177	176	176	175	175	175	175	175
70% Exceedance	175	176	176	176	177	176	176	175	175	175	175	175
80% Exceedance	175	176	176	176	177	176	176	175	175	175	175	175
90% Exceedance	175	176	176	176	176	176	175	175	175	175	175	175
Full Simulation Period Average ^a	176	176	177	177	178	177	176	176	176	175	175	175
Wet Water Years (32%)	176	176	177	177	177	176	176	175	175	175	175	175
Above Normal Years (9%)	176	177	177	177	177	176	176	175	175	175	175	175
Below Normal Years (20%)	176	176	177	177	178	177	176	175	176	175	175	175
Dry Water Years (21%)	176	176	177	177	178	177	176	176	176	175	176	176
Critical Water Years (18%)	176	176	177	178	179	178	176	176	176	176	176	176

Table 4L-7-3-1c. Sacramento River downstream of Georgiana Slough Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
20% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
30% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
40% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
50% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
60% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
70% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
80% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
90% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
Full Simulation Period Average ^a	0	0	0	0	0	0	0	0	0	0	0	0
Wet Water Years (32%)	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal Years (9%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal Years (20%)	0	0	0	0	0	0	0	0	0	0	0	0
Dry Water Years (21%)	0	0	0	0	0	0	0	0	0	0	0	0
Critical Water Years (18%)	0	0	0	0	0	0	0	0	0	0	0	0

^a Based on the 100-year simulation period.

 \ast All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

* These results are displayed with water year - year type sorting.

Figure 4L-7-3a. Sacramento River downstream of Georgiana Slough Salinity, Long-Term Average EC

Figure 4L-7-3b. Sacramento River downstream of Georgiana Slough Salinity, Wet Year Average EC

Figure 4L-7-3c. Sacramento River downstream of Georgiana Slough Salinity, Above Normal Year Average EC

Figure 4L-7-3d. Sacramento River downstream of Georgiana Slough Salinity, Below Normal Year Average EC

Figure 4L-7-3e. Sacramento River downstream of Georgiana Slough Salinity, Dry Year Average EC

Figure 4L-7-3f. Sacramento River downstream of Georgiana Slough Salinity, Critical Year Average EC

Figure 4L-7-3g. Sacramento River downstream of Georgiana Slough Salinity, October EC

Figure 4L-7-3h. Sacramento River downstream of Georgiana Slough Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-3i. Sacramento River downstream of Georgiana Slough Salinity, December EC

Figure 4L-7-3j. Sacramento River downstream of Georgiana Slough Salinity, January EC

Figure 4L-7-3k. Sacramento River downstream of Georgiana Slough Salinity, February EC

Figure 4L-7-3I. Sacramento River downstream of Georgiana Slough Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-3m. Sacramento River downstream of Georgiana Slough Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-3n. Sacramento River downstream of Georgiana Slough Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-30. Sacramento River downstream of Georgiana Slough Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-3p. Sacramento River downstream of Georgiana Slough Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-3q. Sacramento River downstream of Georgiana Slough Salinity, August EC

Figure 4L-7-3r. Sacramento River downstream of Georgiana Slough Salinity, September EC

Table 4L-7-4-1a. Sacramento River at Rio Vista Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	509	454	361	260	209	200	200	213	301	318	387	423
20% Exceedance	414	405	303	236	196	192	196	192	205	232	330	377
30% Exceedance	379	354	276	211	193	189	191	190	200	212	289	335
40% Exceedance	354	308	249	199	190	186	189	187	197	198	242	315
50% Exceedance	308	273	229	192	186	185	187	184	192	193	220	275
60% Exceedance	189	224	207	186	183	182	183	182	186	186	201	195
70% Exceedance	187	215	191	183	182	180	182	180	182	183	196	190
80% Exceedance	185	206	184	180	180	179	180	178	179	181	192	188
90% Exceedance	183	190	180	179	179	179	178	177	177	180	187	185
Full Simulation Period Average ^a	308	302	251	208	191	188	189	192	209	215	256	282
Wet Water Years (32%)	274	251	202	183	180	180	180	178	180	181	190	187
Above Normal Years (9%)	299	294	222	187	184	182	182	181	183	183	193	189
Below Normal Years (20%)	288	292	267	205	189	185	187	185	195	193	224	282
Dry Water Years (21%)	308	299	264	222	196	191	192	190	199	217	295	343
Critical Water Years (18%)	397	412	319	248	208	205	206	234	300	314	394	429

Table 4L-7-4-1b. Sacramento River at Rio Vista Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	509	453	347	260	210	199	200	213	299	319	384	426
20% Exceedance	418	405	304	234	196	192	196	192	206	231	338	387
30% Exceedance	381	351	278	210	193	189	191	190	201	215	300	341
40% Exceedance	352	312	247	198	190	187	189	187	198	199	239	317
50% Exceedance	322	271	227	192	186	185	187	185	192	193	218	274
60% Exceedance	191	223	207	187	184	182	183	183	186	186	205	195
70% Exceedance	188	215	190	183	182	180	182	180	182	183	199	191
80% Exceedance	187	207	184	180	180	179	180	178	178	181	195	188
90% Exceedance	184	190	180	179	179	179	178	177	177	180	191	187
Full Simulation Period Average ^a	311	302	250	208	190	188	189	192	209	215	259	285
Wet Water Years (32%)	277	250	199	183	180	180	180	178	180	181	192	188
Above Normal Years (9%)	299	294	222	187	184	182	182	181	184	184	198	188
Below Normal Years (20%)	291	292	267	205	189	185	187	185	196	193	220	282
Dry Water Years (21%)	308	299	264	222	195	191	192	190	200	219	309	351
Critical Water Years (18%)	401	412	318	249	208	204	206	233	298	313	391	430

Table 4L-7-4-1c. Sacramento River at Rio Vista Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	0	-1	-13	0	1	0	0	0	-2	1	-3	3
20% Exceedance	4	-1	1	-2	0	0	0	0	1	0	8	10
30% Exceedance	2	-3	2	-1	0	0	0	0	1	3	11	6
40% Exceedance	-2	5	-2	0	0	0	0	0	0	1	-3	3
50% Exceedance	14	-2	-2	0	0	0	0	0	1	0	-3	-1
60% Exceedance	2	-1	0	0	0	0	0	0	0	0	4	0
70% Exceedance	1	1	0	0	0	0	0	0	0	0	3	1
80% Exceedance	1	0	0	0	0	0	0	0	0	0	3	0
90% Exceedance	1	0	0	0	0	0	0	0	0	0	4	1
Full Simulation Period Average ^a	2	0	-1	0	0	0	0	0	0	0	3	2
Wet Water Years (32%)	3	-1	-3	0	0	0	0	0	0	0	2	1
Above Normal Years (9%)	1	0	1	0	0	0	0	0	0	1	4	0
Below Normal Years (20%)	3	0	-1	0	0	0	0	0	1	1	-3	0
Dry Water Years (21%)	0	0	0	-1	-1	0	0	0	1	1	14	8
Critical Water Years (18%)	3	-1	-1	0	0	-1	0	0	-2	-1	-3	1

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-4a. Sacramento River at Rio Vista Salinity, Long-Term Average EC

Figure 4L-7-4b. Sacramento River at Rio Vista Salinity, Wet Year Average EC

Figure 4L-7-4c. Sacramento River at Rio Vista Salinity, Above Normal Year Average EC

Figure 4L-7-4d. Sacramento River at Rio Vista Salinity, Below Normal Year Average EC

Figure 4L-7-4f. Sacramento River at Rio Vista Salinity, Critical Year Average EC

Figure 4L-7-4g. Sacramento River at Rio Vista Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-4h. Sacramento River at Rio Vista Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-4i. Sacramento River at Rio Vista Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-4j. Sacramento River at Rio Vista Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-4k. Sacramento River at Rio Vista Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-4I. Sacramento River at Rio Vista Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-4m. Sacramento River at Rio Vista Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-4n. Sacramento River at Rio Vista Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-4o. Sacramento River at Rio Vista Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-4p. Sacramento River at Rio Vista Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-4q. Sacramento River at Rio Vista Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-4r. Sacramento River at Rio Vista Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-5-1a. Sacramento River at Emmaton Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,639	3,135	2,168	1,226	441	345	421	706	1,506	1,947	2,524	3,261
20% Exceedance	3,002	2,828	1,720	840	292	240	307	386	688	1,077	2,131	2,897
30% Exceedance	2,729	2,422	1,332	559	238	204	250	334	591	846	1,786	2,402
40% Exceedance	2,425	2,008	992	334	210	195	219	246	551	622	1,207	2,167
50% Exceedance	1,973	1,493	744	272	197	193	202	212	427	484	910	1,636
60% Exceedance	449	947	518	230	190	188	192	199	322	373	653	475
70% Exceedance	396	794	302	189	184	183	189	189	216	314	562	422
80% Exceedance	374	686	238	183	182	181	184	181	183	276	520	396
90% Exceedance	340	343	197	180	180	180	179	177	177	238	428	369
Full Simulation Period Average ^a	1,753	1,665	984	504	268	241	273	359	587	734	1,227	1,590
Wet Water Years (32%)	1,433	1,160	440	217	182	181	184	187	225	267	464	367
Above Normal Years (9%)	1,633	1,437	680	238	190	186	191	197	277	312	541	405
Below Normal Years (20%)	1,542	1,601	1,182	470	223	195	216	236	474	501	981	1,654
Dry Water Years (21%)	1,739	1,729	1,151	667	305	248	282	325	569	893	1,775	2,496
Critical Water Years (18%)	2,633	2,675	1,689	994	466	415	523	922	1,531	1,851	2,560	3,229

Table 4L-7-5-1b. Sacramento River at Emmaton Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,629	3,112	2,087	1,189	432	339	421	715	1,505	1,957	2,523	3,286
20% Exceedance	3,098	2,752	1,743	818	296	239	303	389	690	1,053	2,190	2,932
30% Exceedance	2,812	2,411	1,333	575	240	204	252	335	603	869	1,871	2,527
40% Exceedance	2,493	2,020	987	337	210	195	219	246	544	600	1,192	2,205
50% Exceedance	2,065	1,462	730	271	197	193	203	213	427	498	843	1,600
60% Exceedance	455	926	516	229	190	188	192	199	312	376	694	456
70% Exceedance	407	786	301	189	184	183	189	189	210	318	594	422
80% Exceedance	384	687	238	183	182	181	184	181	183	270	560	390
90% Exceedance	349	346	197	180	180	180	179	177	177	237	490	363
Full Simulation Period Average ^a	1,781	1,666	976	502	264	238	272	358	587	738	1,249	1,613
Wet Water Years (32%)	1,469	1,153	419	213	182	181	184	187	221	266	497	373
Above Normal Years (9%)	1,637	1,443	687	241	190	186	191	197	275	318	590	387
Below Normal Years (20%)	1,578	1,607	1,175	467	224	195	216	241	480	505	910	1,680
Dry Water Years (21%)	1,746	1,734	1,154	665	296	246	281	325	581	904	1,885	2,576
Critical Water Years (18%)	2,674	2,673	1,681	996	455	405	520	913	1,519	1,852	2,549	3,233

Table 4L-7-5-1c. Sacramento River at Emmaton Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	-10	-23	-81	-37	-10	-6	0	9	-1	10	-1	25
20% Exceedance	96	-76	23	-21	5	-2	-5	3	3	-24	59	35
30% Exceedance	83	-10	0	16	2	0	1	1	12	23	84	126
40% Exceedance	67	12	-5	3	0	0	0	1	-7	-22	-15	38
50% Exceedance	92	-31	-14	-1	0	0	0	2	0	13	-68	-37
60% Exceedance	6	-21	-2	-1	0	0	0	0	-10	3	42	-19
70% Exceedance	11	-8	-1	0	0	0	0	0	-6	5	32	0
80% Exceedance	10	1	0	0	0	0	0	0	0	-6	40	-6
90% Exceedance	9	3	0	0	0	0	0	0	0	-1	62	-5
Full Simulation Period Average ^a	28	0	-8	-2	-4	-2	-1	-1	0	3	22	23
Wet Water Years (32%)	36	-7	-21	-4	0	0	0	0	-4	-1	33	6
Above Normal Years (9%)	4	7	7	3	0	0	0	0	-2	5	49	-18
Below Normal Years (20%)	36	6	-7	-3	1	0	0	5	6	4	-71	26
Dry Water Years (21%)	6	5	3	-2	-9	-2	-1	1	12	11	110	80
Critical Water Years (18%)	41	-2	-8	2	-10	-9	-3	-9	-13	1	-11	4

^a Based on the 100-year simulation period.

 \ast All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-5a. Sacramento River at Emmaton Salinity, Long-Term Average EC

Figure 4L-7-5b. Sacramento River at Emmaton Salinity, Wet Year Average EC

Figure 4L-7-5c. Sacramento River at Emmaton Salinity, Above Normal Year Average EC

Figure 4L-7-5d. Sacramento River at Emmaton Salinity, Below Normal Year Average EC

Figure 4L-7-5e. Sacramento River at Emmaton Salinity, Dry Year Average EC

Figure 4L-7-5f. Sacramento River at Emmaton Salinity, Critical Year Average EC

Figure 4L-7-5g. Sacramento River at Emmaton Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-5h. Sacramento River at Emmaton Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-5i. Sacramento River at Emmaton Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-5j. Sacramento River at Emmaton Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-5k. Sacramento River at Emmaton Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-5I. Sacramento River at Emmaton Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-5m. Sacramento River at Emmaton Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-5n. Sacramento River at Emmaton Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-50. Sacramento River at Emmaton Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-5p. Sacramento River at Emmaton Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-5q. Sacramento River at Emmaton Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-5r. Sacramento River at Emmaton Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-6-1a. Sacramento River at Collinsville Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	11,569	10,759	8,434	5,917	2,455	1,927	2,297	3,436	5,803	7,559	8,604	10,880
20% Exceedance	10,469	10,008	7,754	4,451	1,473	968	1,499	2,148	3,494	5,495	7,887	10,140
30% Exceedance	9,845	9,258	6,407	3,197	777	416	1,004	1,786	3,187	4,929	7,210	9,281
40% Exceedance	9,341	8,616	5,414	1,556	437	315	566	1,051	2,929	4,231	6,236	8,369
50% Exceedance	7,881	6,899	4,314	1,018	323	264	348	608	2,276	3,386	5,469	7,072
60% Exceedance	2,658	4,964	3,002	692	220	206	252	405	1,581	2,578	3,997	2,849
70% Exceedance	2,411	4,537	1,315	241	197	193	225	271	799	2,033	3,645	2,641
80% Exceedance	2,354	4,130	697	197	189	188	194	196	298	1,574	3,282	2,548
90% Exceedance	2,207	2,281	365	185	184	184	183	179	195	1,127	2,813	2,400
Full Simulation Period Average ^a	6,549	6,732	4,288	2,144	900	685	911	1,364	2,468	3,657	5,430	6,320
Wet Water Years (32%)	5,706	5,263	1,909	461	198	191	224	297	669	1,385	2,832	2,229
Above Normal Years (9%)	6,047	6,096	3,507	700	230	215	247	405	1,157	2,066	3,696	2,488
Below Normal Years (20%)	5,981	6,657	5,193	2,111	604	325	484	771	2,334	3,465	5,528	7,231
Dry Water Years (21%)	6,481	7,041	5,139	3,253	1,247	838	1,194	1,638	3,029	4,989	7,275	9,426
Critical Water Years (18%)	9,008	9,385	6,910	4,604	2,408	2,020	2,608	4,077	5,819	7,148	8,654	10,875

Table 4L-7-6-1b. Sacramento River at Collinsville Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	11,575	10,757	8,436	5,717	2,296	1,919	2,312	3,473	5,804	7,577	8,630	10,912
20% Exceedance	10,598	9,976	7,681	4,404	1,451	937	1,433	2,156	3,571	5,512	8,001	10,254
30% Exceedance	9,979	9,336	6,344	3,307	792	413	1,003	1,813	3,189	4,894	7,452	9,604
40% Exceedance	9,449	8,638	5,447	1,600	440	307	573	1,057	2,923	3,959	6,006	8,671
50% Exceedance	8,236	6,862	4,209	978	305	263	346	621	2,262	3,316	5,134	7,244
60% Exceedance	2,689	4,963	2,895	683	219	206	251	417	1,530	2,498	4,306	2,884
70% Exceedance	2,454	4,527	1,273	240	197	193	225	272	699	2,027	3,797	2,652
80% Exceedance	2,372	4,071	697	197	189	188	194	196	280	1,525	3,551	2,565
90% Exceedance	2,217	2,308	369	185	184	184	183	179	193	1,122	3,224	2,409
Full Simulation Period Average ^a	6,643	6,739	4,268	2,135	873	668	907	1,363	2,451	3,626	5,463	6,470
Wet Water Years (32%)	5,822	5,256	1,846	430	196	191	224	297	629	1,375	3,011	2,308
Above Normal Years (9%)	6,059	6,111	3,563	733	230	215	247	406	1,120	2,016	3,830	2,504
Below Normal Years (20%)	6,087	6,672	5,169	2,098	602	318	483	802	2,330	3,350	5,178	7,584
Dry Water Years (21%)	6,515	7,070	5,150	3,269	1,218	819	1,186	1,643	3,046	4,988	7,436	9,671
Critical Water Years (18%)	9,159	9,379	6,897	4,586	2,299	1,954	2,596	4,033	5,795	7,151	8,653	10,880

Table 4L-7-6-1c. Sacramento River at Collinsville Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	6	-1	2	-201	-159	-8	15	37	1	17	26	32
20% Exceedance	129	-33	-73	-46	-22	-31	-66	7	77	17	114	114
30% Exceedance	134	79	-63	110	15	-3	-1	27	2	-35	242	322
40% Exceedance	107	22	33	44	3	-7	6	7	-6	-272	-230	303
50% Exceedance	355	-36	-105	-40	-18	0	-2	13	-14	-70	-335	172
60% Exceedance	31	-1	-107	-9	-1	0	-1	12	-51	-80	310	36
70% Exceedance	44	-10	-42	-1	0	0	-1	2	-101	-7	152	10
80% Exceedance	17	-59	0	1	0	0	0	0	-18	-49	269	17
90% Exceedance	10	27	4	0	0	0	0	0	-2	-5	410	9
Full Simulation Period Average ^a	94	7	-20	-9	-27	-17	-4	-1	-18	-30	33	150
Wet Water Years (32%)	117	-7	-64	-31	-1	0	0	0	-40	-10	179	80
Above Normal Years (9%)	12	16	56	33	0	0	0	1	-37	-51	135	16
Below Normal Years (20%)	107	15	-24	-13	-3	-6	-1	31	-4	-114	-350	353
Dry Water Years (21%)	34	30	10	16	-29	-19	-8	4	17	-1	161	245
Critical Water Years (18%)	151	-6	-13	-17	-110	-66	-12	-44	-25	2	-2	5

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-6a. Sacramento River at Collinsville Salinity, Long-Term Average EC

Figure 4L-7-6b. Sacramento River at Collinsville Salinity, Wet Year Average EC

Figure 4L-7-6c. Sacramento River at Collinsville Salinity, Above Normal Year Average EC

Figure 4L-7-6d. Sacramento River at Collinsville Salinity, Below Normal Year Average EC

Figure 4L-7-6e. Sacramento River at Collinsville Salinity, Dry Year Average EC

Figure 4L-7-6f. Sacramento River at Collinsville Salinity, Critical Year Average EC

Figure 4L-7-6g. Sacramento River at Collinsville Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-6h. Sacramento River at Collinsville Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-6i. Sacramento River at Collinsville Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-6j. Sacramento River at Collinsville Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-6k. Sacramento River at Collinsville Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-6I. Sacramento River at Collinsville Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-6m. Sacramento River at Collinsville Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-6n. Sacramento River at Collinsville Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-60. Sacramento River at Collinsville Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-6p. Sacramento River at Collinsville Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-6q. Sacramento River at Collinsville Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-6r. Sacramento River at Collinsville Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-7-1a. Sacramento River at Mallard Slough Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	16,099	15,030	12,367	9,514	4,854	4,071	4,618	6,179	9,244	11,583	12,866	15,288
20% Exceedance	14,928	14,256	11,614	7,546	3,187	2,377	3,268	4,403	6,401	9,016	11,924	14,504
30% Exceedance	14,213	13,448	10,278	6,068	1,789	1,046	2,298	3,731	5,785	8,383	11,146	13,530
40% Exceedance	13,719	12,792	9,220	3,377	996	759	1,427	2,468	5,534	7,423	10,151	12,570
50% Exceedance	12,001	10,812	7,594	2,385	631	544	847	1,508	4,401	6,361	9,017	11,090
60% Exceedance	5,329	8,401	5,646	1,501	356	271	507	1,003	3,360	5,168	7,267	5,753
70% Exceedance	5,013	8,066	2,841	397	218	215	373	557	1,911	4,315	6,798	5,472
80% Exceedance	4,958	7,346	1,298	237	199	194	234	269	730	3,426	6,220	5,369
90% Exceedance	4,747	4,860	739	193	189	189	190	203	319	2,488	5,607	5,063
Full Simulation Period Average ^a	10,045	10,255	6,892	3,677	1,707	1,337	1,804	2,575	4,366	6,408	8,878	9,891
Wet Water Years (32%)	8,987	8,416	3,343	765	230	221	344	555	1,378	2,999	5,512	4,725
Above Normal Years (9%)	9,364	9,663	6,147	1,411	362	325	466	914	2,407	4,254	6,781	5,185
Below Normal Years (20%)	9,386	10,226	8,241	3,778	1,266	678	1,068	1,717	4,386	6,467	9,173	11,373
Dry Water Years (21%)	10,012	10,664	8,204	5,686	2,513	1,820	2,618	3,469	5,614	8,502	11,214	13,700
Critical Water Years (18%)	13,035	13,375	10,545	7,530	4,551	3,996	4,940	6,909	9,178	11,035	12,855	15,340

Table 4L-7-7-1b. Sacramento River at Mallard Slough Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	16,117	15,088	12,395	9,314	4,691	4,058	4,646	6,232	9,246	11,592	12,868	15,332
20% Exceedance	15,003	14,079	11,590	7,502	3,176	2,314	3,204	4,395	6,520	8,969	11,968	14,627
30% Exceedance	14,296	13,495	10,226	6,145	1,738	1,030	2,307	3,776	5,841	8,384	11,447	13,951
40% Exceedance	13,778	12,834	9,326	3,374	967	720	1,429	2,462	5,465	7,239	9,885	12,888
50% Exceedance	12,449	10,611	7,560	2,348	603	549	839	1,530	4,413	6,349	8,780	11,451
60% Exceedance	5,313	8,438	5,586	1,454	350	271	508	1,005	3,327	5,006	7,718	5,814
70% Exceedance	5,072	8,056	2,765	395	218	217	372	558	1,731	4,310	6,994	5,526
80% Exceedance	4,980	7,176	1,306	232	199	195	234	269	670	3,345	6,654	5,390
90% Exceedance	4,769	4,869	736	193	190	189	190	203	309	2,480	6,240	5,166
Full Simulation Period Average ^a	10,142	10,262	6,868	3,664	1,661	1,305	1,798	2,580	4,331	6,366	8,955	10,101
Wet Water Years (32%)	9,114	8,411	3,260	722	228	223	345	555	1,300	2,978	5,768	4,894
Above Normal Years (9%)	9,359	9,674	6,237	1,465	360	325	466	920	2,333	4,189	7,031	5,263
Below Normal Years (20%)	9,508	10,238	8,208	3,760	1,252	659	1,065	1,773	4,374	6,320	8,836	11,804
Dry Water Years (21%)	10,040	10,700	8,221	5,704	2,467	1,780	2,602	3,477	5,629	8,504	11,404	13,994
Critical Water Years (18%)	13,188	13,360	10,528	7,507	4,374	3,884	4,924	6,860	9,154	11,035	12,857	15,345

Table 4L-7-7-1c. Sacramento River at Mallard Slough Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	18	58	29	-200	-163	-13	28	52	2	9	2	44
20% Exceedance	75	-177	-25	-43	-12	-63	-64	-7	119	-47	44	123
30% Exceedance	82	46	-52	78	-52	-16	9	45	56	1	302	421
40% Exceedance	59	42	106	-3	-30	-39	3	-6	-69	-184	-267	318
50% Exceedance	447	-201	-34	-37	-28	5	-7	22	12	-12	-237	361
60% Exceedance	-16	37	-60	-48	-6	0	1	1	-33	-162	450	61
70% Exceedance	58	-9	-76	-2	0	2	-1	0	-179	-5	196	54
80% Exceedance	22	-171	8	-5	0	0	0	0	-61	-81	434	22
90% Exceedance	22	9	-4	0	0	0	0	0	-10	-8	633	102
Full Simulation Period Average ^a	98	7	-25	-13	-46	-32	-6	5	-35	-42	77	210
Wet Water Years (32%)	127	-4	-83	-43	-2	1	1	1	-78	-21	256	169
Above Normal Years (9%)	-5	11	90	54	-2	0	0	5	-74	-65	250	78
Below Normal Years (20%)	122	12	-33	-18	-14	-19	-3	56	-11	-148	-337	431
Dry Water Years (21%)	28	35	16	18	-47	-40	-15	8	16	2	190	294
Critical Water Years (18%)	153	-15	-17	-24	-178	-112	-16	-49	-24	0	2	5

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-7a. Sacramento River at Mallard Slough Salinity, Long-Term Average EC

Figure 4L-7-7b. Sacramento River at Mallard Slough Salinity, Wet Year Average EC

Figure 4L-7-7c. Sacramento River at Mallard Slough Salinity, Above Normal Year Average EC

Figure 4L-7-7d. Sacramento River at Mallard Slough Salinity, Below Normal Year Average EC

Figure 4L-7-7e. Sacramento River at Mallard Slough Salinity, Dry Year Average EC

Figure 4L-7-7f. Sacramento River at Mallard Slough Salinity, Critical Year Average EC

Figure 4L-7-7g. Sacramento River at Mallard Slough Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-7h. Sacramento River at Mallard Slough Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-7i. Sacramento River at Mallard Slough Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-7j. Sacramento River at Mallard Slough Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-7k. Sacramento River at Mallard Slough Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-7I. Sacramento River at Mallard Slough Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-7m. Sacramento River at Mallard Slough Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-7n. Sacramento River at Mallard Slough Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-70. Sacramento River at Mallard Slough Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-7p. Sacramento River at Mallard Slough Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-7q. Sacramento River at Mallard Slough Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-7r. Sacramento River at Mallard Slough Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-8-1a. Chipps Island North Channel Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	17,315	16,179	13,491	10,589	5,707	4,872	5,458	7,107	10,345	12,810	14,143	16,520
20% Exceedance	16,136	15,425	12,739	8,536	3,839	2,966	3,974	5,195	7,382	10,067	13,086	15,705
30% Exceedance	15,437	14,601	11,426	7,019	2,158	1,361	2,832	4,467	6,667	9,499	12,285	14,703
40% Exceedance	14,947	13,960	10,382	4,077	1,300	1,001	1,831	3,036	6,400	8,430	11,341	13,835
50% Exceedance	13,221	11,927	8,633	2,946	805	685	1,100	1,904	5,131	7,361	10,061	12,329
60% Exceedance	6,289	9,514	6,519	1,865	446	328	652	1,299	4,044	6,045	8,331	6,807
70% Exceedance	5,994	9,164	3,480	480	238	241	474	724	2,371	5,162	7,805	6,517
80% Exceedance	5,899	8,390	1,565	264	204	200	263	329	955	4,127	7,234	6,393
90% Exceedance	5,683	5,653	857	195	191	188	197	228	406	3,057	6,612	6,050
Full Simulation Period Average ^a	11,121	11,293	7,699	4,195	2,016	1,606	2,160	3,031	5,025	7,310	9,963	11,009
Wet Water Years (32%)	10,018	9,379	3,833	887	249	242	411	683	1,672	3,614	6,452	5,668
Above Normal Years (9%)	10,405	10,745	7,008	1,709	441	393	599	1,158	2,893	5,011	7,766	6,191
Below Normal Years (20%)	10,454	11,283	9,168	4,366	1,552	864	1,343	2,120	5,107	7,429	10,261	12,630
Dry Water Years (21%)	11,108	11,724	9,137	6,494	3,009	2,236	3,185	4,162	6,500	9,596	12,394	14,899
Critical Water Years (18%)	14,194	14,479	11,609	8,447	5,304	4,725	5,761	7,836	10,240	12,232	14,138	16,572

Table 4L-7-8-1b. Chipps Island North Channel Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	17,317	16,252	13,572	10,422	5,595	4,857	5,490	7,163	10,346	12,818	14,159	16,563
20% Exceedance	16,219	15,266	12,711	8,503	3,833	2,892	3,901	5,217	7,512	10,031	13,133	15,784
30% Exceedance	15,520	14,641	11,393	7,095	2,146	1,344	2,826	4,501	6,709	9,489	12,653	15,177
40% Exceedance	14,979	13,971	10,482	4,074	1,207	943	1,837	3,029	6,316	8,311	11,030	14,071
50% Exceedance	13,676	11,711	8,633	2,916	746	692	1,086	1,931	5,167	7,355	9,847	12,704
60% Exceedance	6,261	9,499	6,443	1,811	437	328	654	1,301	4,027	5,883	8,794	6,869
70% Exceedance	6,054	9,156	3,395	480	238	243	473	725	2,162	5,150	8,068	6,591
80% Exceedance	5,925	8,193	1,584	256	204	200	262	329	878	4,010	7,717	6,446
90% Exceedance	5,660	5,648	842	195	191	188	197	229	392	3,006	7,246	6,164
Full Simulation Period Average ^a	11,211	11,298	7,674	4,181	1,966	1,569	2,153	3,038	4,986	7,273	10,064	11,224
Wet Water Years (32%)	10,138	9,374	3,747	843	246	244	412	684	1,583	3,588	6,723	5,865
Above Normal Years (9%)	10,391	10,754	7,106	1,765	437	393	600	1,165	2,807	4,958	8,070	6,276
Below Normal Years (20%)	10,573	11,293	9,134	4,347	1,534	839	1,339	2,183	5,094	7,297	9,970	13,036
Dry Water Years (21%)	11,128	11,759	9,155	6,510	2,956	2,188	3,167	4,171	6,516	9,606	12,603	15,197
Critical Water Years (18%)	14,334	14,461	11,590	8,425	5,112	4,601	5,744	7,790	10,217	12,231	14,141	16,577

Table 4L-7-8-1c. Chipps Island North Channel Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	2	73	81	-167	-111	-15	32	56	1	9	15	43
20% Exceedance	83	-159	-27	-33	-6	-74	-72	21	131	-36	47	79
30% Exceedance	83	39	-33	76	-11	-17	-6	34	42	-10	368	474
40% Exceedance	32	11	101	-3	-93	-58	5	-7	-84	-119	-311	236
50% Exceedance	455	-216	0	-30	-59	8	-14	26	36	-6	-214	375
60% Exceedance	-28	-15	-76	-55	-9	0	1	2	-17	-162	463	63
70% Exceedance	61	-8	-85	0	0	2	-1	0	-210	-12	263	73
80% Exceedance	26	-196	19	-8	1	0	-1	0	-77	-117	483	53
90% Exceedance	-24	-5	-15	0	0	0	0	2	-14	-51	633	115
Full Simulation Period Average ^a	90	5	-25	-14	-51	-37	-7	7	-40	-37	100	215
Wet Water Years (32%)	120	-4	-85	-45	-3	2	1	1	-89	-26	271	197
Above Normal Years (9%)	-14	8	98	57	-4	0	1	7	-85	-53	304	85
Below Normal Years (20%)	119	10	-34	-20	-18	-24	-4	64	-13	-132	-291	406
Dry Water Years (21%)	20	35	18	16	-53	-48	-18	9	15	10	209	299
Critical Water Years (18%)	139	-18	-19	-22	-192	-124	-16	-46	-22	-1	3	5

^a Based on the 100-year simulation period.

 \ast All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-8b. Chipps Island North Channel Salinity, Wet Year Average EC

Figure 4L-7-8c. Chipps Island North Channel Salinity, Above Normal Year Average EC

Figure 4L-7-8d. Chipps Island North Channel Salinity, Below Normal Year Average EC

Figure 4L-7-8e. Chipps Island North Channel Salinity, Dry Year Average EC

Figure 4L-7-8g. Chipps Island North Channel Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-8h. Chipps Island North Channel Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-8i. Chipps Island North Channel Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-8j. Chipps Island North Channel Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-8k. Chipps Island North Channel Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-8I. Chipps Island North Channel Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-8m. Chipps Island North Channel Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-8n. Chipps Island North Channel Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-80. Chipps Island North Channel Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-8p. Chipps Island North Channel Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-8q. Chipps Island North Channel Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-8r. Chipps Island North Channel Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-9-1a. Chipps Island South Channel Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	16,052	15,028	12,344	9,424	4,878	3,940	4,445	5,867	8,991	11,422	12,681	15,298
20% Exceedance	14,880	14,263	11,678	7,533	2,947	2,238	3,089	4,164	6,126	8,781	11,716	14,479
30% Exceedance	14,261	13,415	10,177	6,048	1,880	948	2,106	3,496	5,457	8,060	11,049	13,507
40% Exceedance	13,674	12,730	9,162	3,266	1,024	694	1,268	2,205	5,173	7,152	9,962	12,505
50% Exceedance	11,935	10,644	7,564	2,293	668	515	743	1,308	4,030	6,182	8,815	11,029
60% Exceedance	5,132	8,219	5,344	1,606	359	243	433	883	3,064	4,894	7,024	5,706
70% Exceedance	4,835	7,772	2,897	415	213	205	323	467	1,659	4,077	6,636	5,433
80% Exceedance	4,732	7,041	1,517	224	196	193	222	236	598	3,167	5,948	5,321
90% Exceedance	4,528	4,525	750	193	190	189	188	187	267	2,237	5,415	5,016
Full Simulation Period Average ^a	9,949	10,144	6,884	3,672	1,700	1,283	1,699	2,419	4,121	6,183	8,692	9,837
Wet Water Years (32%)	8,906	8,326	3,403	775	234	213	312	497	1,237	2,768	5,280	4,663
Above Normal Years (9%)	9,251	9,530	6,115	1,450	343	298	404	795	2,175	4,031	6,610	5,170
Below Normal Years (20%)	9,274	10,077	8,197	3,807	1,251	632	961	1,560	4,074	6,290	8,996	11,291
Dry Water Years (21%)	9,892	10,541	8,160	5,624	2,508	1,728	2,447	3,244	5,294	8,244	11,058	13,649
Critical Water Years (18%)	12,970	13,297	10,508	7,506	4,542	3,880	4,758	6,639	8,903	10,806	12,703	15,307

Table 4L-7-9-1b. Chipps Island South Channel Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	16,071	15,115	12,361	9,339	4,594	3,927	4,478	5,921	8,993	11,422	12,695	15,317
20% Exceedance	15,002	14,090	11,672	7,483	2,999	2,174	3,021	4,174	6,187	8,710	11,792	14,536
30% Exceedance	14,329	13,436	10,074	6,250	1,872	911	2,099	3,585	5,484	8,126	11,298	13,893
40% Exceedance	13,764	12,804	9,286	3,264	1,028	656	1,267	2,224	5,107	7,006	9,697	12,809
50% Exceedance	12,369	10,442	7,546	2,221	622	513	741	1,326	4,051	6,065	8,519	11,417
60% Exceedance	5,143	8,209	5,323	1,585	353	243	434	878	3,015	4,702	7,427	5,754
70% Exceedance	4,880	7,793	2,832	411	214	207	323	468	1,492	4,082	6,802	5,515
80% Exceedance	4,777	6,975	1,530	225	195	193	222	236	546	3,084	6,442	5,398
90% Exceedance	4,533	4,521	756	193	190	189	188	187	258	2,196	6,043	5,160
Full Simulation Period Average ^a	10,059	10,154	6,859	3,658	1,656	1,250	1,692	2,422	4,089	6,132	8,753	10,058
Wet Water Years (32%)	9,047	8,325	3,319	730	231	214	312	497	1,166	2,743	5,529	4,839
Above Normal Years (9%)	9,260	9,538	6,205	1,509	343	298	405	799	2,108	3,943	6,820	5,287
Below Normal Years (20%)	9,410	10,090	8,166	3,788	1,239	614	958	1,612	4,069	6,120	8,629	11,729
Dry Water Years (21%)	9,925	10,578	8,177	5,643	2,466	1,688	2,432	3,250	5,310	8,240	11,226	13,960
Critical Water Years (18%)	13,137	13,288	10,489	7,480	4,365	3,761	4,741	6,588	8,877	10,805	12,706	15,311

Table 4L-7-9-1c. Chipps Island South Channel Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	19	88	17	-85	-284	-13	33	53	2	0	14	19
20% Exceedance	122	-173	-6	-50	52	-64	-68	10	61	-71	76	58
30% Exceedance	68	20	-103	202	-8	-37	-7	89	27	66	249	386
40% Exceedance	90	75	124	-2	3	-38	-1	19	-66	-146	-265	304
50% Exceedance	434	-202	-19	-71	-46	-1	-2	17	21	-117	-296	388
60% Exceedance	11	-10	-21	-21	-6	0	2	-5	-49	-192	403	48
70% Exceedance	46	21	-65	-4	0	2	0	0	-167	5	166	82
80% Exceedance	45	-66	13	1	0	0	0	0	-51	-82	494	76
90% Exceedance	6	-4	7	0	0	0	0	0	-9	-41	628	144
Full Simulation Period Average ^a	110	9	-25	-14	-44	-33	-7	3	-31	-51	61	221
Wet Water Years (32%)	141	-1	-84	-46	-4	1	1	0	-71	-25	249	176
Above Normal Years (9%)	8	8	90	59	0	0	0	4	-67	-88	211	117
Below Normal Years (20%)	136	13	-30	-19	-12	-18	-3	52	-6	-170	-367	438
Dry Water Years (21%)	33	37	17	18	-41	-40	-16	7	16	-4	168	312
Critical Water Years (18%)	167	-9	-20	-25	-177	-119	-17	-52	-26	-1	2	5

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-9a. Chipps Island South Channel Salinity, Long-Term Average EC

Figure 4L-7-9b. Chipps Island South Channel Salinity, Wet Year Average EC

Figure 4L-7-9c. Chipps Island South Channel Salinity, Above Normal Year Average EC

Figure 4L-7-9d. Chipps Island South Channel Salinity, Below Normal Year Average EC

Figure 4L-7-9e. Chipps Island South Channel Salinity, Dry Year Average EC

Figure 4L-7-9g. Chipps Island South Channel Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-9h. Chipps Island South Channel Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-9i. Chipps Island South Channel Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-9j. Chipps Island South Channel Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-9k. Chipps Island South Channel Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-9I. Chipps Island South Channel Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-9m. Chipps Island South Channel Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-9n. Chipps Island South Channel Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-90. Chipps Island South Channel Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-9p. Chipps Island South Channel Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-9q. Chipps Island South Channel Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-9r. Chipps Island South Channel Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-10-1a. Sacramento River at Port Chicago Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	21,533	20,062	17,740	14,657	9,882	8,818	9,442	11,608	15,238	17,769	19,223	20,931
20% Exceedance	20,308	19,415	16,800	12,764	7,613	6,347	7,637	9,263	11,797	14,666	17,710	20,015
30% Exceedance	19,730	18,774	15,792	10,859	4,687	3,674	6,059	8,248	11,001	14,393	16,941	19,088
40% Exceedance	19,358	18,051	14,979	7,783	3,422	2,998	4,554	6,457	10,728	12,859	16,049	18,513
50% Exceedance	17,910	16,299	13,380	5,771	2,090	2,167	3,104	4,728	9,177	11,813	14,611	17,243
60% Exceedance	10,863	14,206	10,882	3,788	1,358	1,225	2,146	3,583	8,091	10,347	13,112	11,535
70% Exceedance	10,615	13,662	6,729	1,509	730	802	1,683	2,360	5,422	9,437	12,639	11,230
80% Exceedance	10,517	12,959	3,148	749	439	481	829	1,281	2,932	7,984	12,028	11,083
90% Exceedance	10,190	9,729	1,848	372	263	280	522	815	1,563	6,585	11,243	10,580
Full Simulation Period Average ^a	15,486	15,401	11,087	6,625	3,764	3,302	4,319	5,662	8,505	11,571	14,621	15,523
Wet Water Years (32%)	14,274	13,326	6,161	1,729	571	613	1,187	1,882	3,764	7,154	10,988	10,090
Above Normal Years (9%)	14,758	15,121	10,751	3,405	1,328	1,203	1,969	3,101	5,914	8,948	12,221	10,767
Below Normal Years (20%)	14,890	15,519	12,956	7,185	3,402	2,391	3,383	4,734	8,983	11,812	14,859	17,484
Dry Water Years (21%)	15,572	15,891	12,975	10,107	5,682	4,809	6,387	7,862	10,901	14,389	17,120	19,312
Critical Water Years (18%)	18,566	18,526	15,733	12,256	8,823	8,387	9,690	12,127	14,904	17,182	19,102	20,961

Table 4L-7-10-1b. Sacramento River at Port Chicago Salinity, Proposed Project ITPSpring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	21,533	20,179	17,731	14,571	9,872	8,803	9,443	11,671	15,238	17,772	19,237	20,934
20% Exceedance	20,455	19,353	16,774	12,729	7,504	6,238	7,543	9,297	11,840	14,740	17,739	20,147
30% Exceedance	19,771	18,634	15,854	10,981	4,564	3,624	6,043	8,305	11,043	14,332	17,444	19,567
40% Exceedance	19,357	18,018	14,840	7,629	3,254	2,908	4,574	6,482	10,608	13,067	15,763	18,572
50% Exceedance	18,130	16,062	13,343	5,779	2,071	2,184	3,071	4,738	9,147	11,949	14,648	17,508
60% Exceedance	10,897	14,170	10,940	3,750	1,333	1,226	2,145	3,606	8,073	10,390	13,528	11,594
70% Exceedance	10,674	13,640	6,637	1,495	718	807	1,679	2,361	5,105	9,447	12,926	11,349
80% Exceedance	10,485	12,806	3,167	743	445	483	830	1,282	2,762	7,798	12,534	11,144
90% Exceedance	10,046	9,836	1,852	359	266	281	525	825	1,511	6,499	11,915	10,683
Full Simulation Period Average ^a	15,525	15,398	11,065	6,608	3,693	3,253	4,311	5,682	8,443	11,573	14,812	15,721
Wet Water Years (32%)	14,346	13,317	6,082	1,684	568	621	1,190	1,885	3,623	7,118	11,289	10,369
Above Normal Years (9%)	14,697	15,124	10,865	3,449	1,310	1,208	1,972	3,119	5,779	8,997	12,755	10,778
Below Normal Years (20%)	14,963	15,523	12,918	7,160	3,357	2,344	3,376	4,831	8,958	11,805	14,786	17,739
Dry Water Years (21%)	15,553	15,917	12,992	10,107	5,591	4,731	6,362	7,877	10,912	14,439	17,406	19,578
Critical Water Years (18%)	18,626	18,492	15,715	12,248	8,597	8,242	9,675	12,097	14,890	17,180	19,106	20,966

Table 4L-7-10-1c. Sacramento River at Port Chicago Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	0	118	-9	-87	-10	-15	2	63	0	3	14	3
20% Exceedance	147	-61	-26	-35	-109	-110	-93	35	43	75	28	132
30% Exceedance	41	-139	63	122	-124	-51	-16	57	43	-61	503	480
40% Exceedance	-1	-33	-139	-154	-167	-90	21	24	-120	208	-287	59
50% Exceedance	221	-237	-36	8	-19	17	-33	10	-31	137	37	265
60% Exceedance	34	-35	58	-39	-25	1	-1	22	-18	43	416	59
70% Exceedance	59	-22	-92	-14	-11	5	-4	1	-317	10	288	119
80% Exceedance	-32	-153	18	-6	6	2	1	2	-170	-186	507	61
90% Exceedance	-144	108	5	-13	3	1	3	11	-52	-85	672	103
Full Simulation Period Average ^a	39	-2	-22	-17	-71	-49	-8	20	-63	2	191	198
Wet Water Years (32%)	72	-8	-79	-45	-3	8	2	3	-142	-36	301	279
Above Normal Years (9%)	-61	3	114	44	-17	5	2	17	-136	49	534	10
Below Normal Years (20%)	73	4	-37	-25	-44	-47	-6	97	-25	-7	-73	255
Dry Water Years (21%)	-19	26	18	0	-91	-78	-25	15	11	50	286	267
Critical Water Years (18%)	60	-34	-18	-8	-226	-145	-14	-29	-14	-1	4	4

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-10a. Sacramento River at Port Chicago Salinity, Long-Term Average EC

Figure 4L-7-10b. Sacramento River at Port Chicago Salinity, Wet Year Average EC

Figure 4L-7-10c. Sacramento River at Port Chicago Salinity, Above Normal Year Average EC

Figure 4L-7-10d. Sacramento River at Port Chicago Salinity, Below Normal Year Average EC

Figure 4L-7-10e. Sacramento River at Port Chicago Salinity, Dry Year Average EC
Figure 4L-7-10f. Sacramento River at Port Chicago Salinity, Critical Year Average EC

Figure 4L-7-10g. Sacramento River at Port Chicago Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10h. Sacramento River at Port Chicago Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10i. Sacramento River at Port Chicago Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10j. Sacramento River at Port Chicago Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10k. Sacramento River at Port Chicago Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10I. Sacramento River at Port Chicago Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10m. Sacramento River at Port Chicago Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10n. Sacramento River at Port Chicago Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10o. Sacramento River at Port Chicago Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10p. Sacramento River at Port Chicago Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10q. Sacramento River at Port Chicago Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-10r. Sacramento River at Port Chicago Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-11-1a. San Joaquin River at Antioch Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	6,779	6,466	5,103	3,279	1,314	864	952	1,508	2,941	3,945	4,669	6,248
20% Exceedance	6,018	5,875	4,535	2,464	799	470	593	888	1,568	2,999	4,227	5,859
30% Exceedance	5,655	5,475	4,007	1,925	618	300	416	729	1,421	2,543	3,941	5,437
40% Exceedance	5,399	5,256	3,512	1,035	396	260	292	434	1,279	2,241	3,565	4,985
50% Exceedance	4,593	3,992	2,751	790	264	238	256	302	963	1,738	3,093	4,365
60% Exceedance	1,228	2,873	1,798	538	252	228	233	257	642	1,242	2,163	1,560
70% Exceedance	1,057	2,694	1,125	306	232	221	221	228	327	974	1,910	1,398
80% Exceedance	1,030	2,226	851	226	221	216	213	205	216	732	1,731	1,315
90% Exceedance	905	1,137	458	209	207	207	192	183	181	475	1,326	1,157
Full Simulation Period Average ^a	3,676	3,972	2,717	1,331	587	408	455	656	1,178	1,916	2,950	3,665
Wet Water Years (32%)	3,220	3,160	1,366	401	230	211	207	217	334	647	1,445	1,151
Above Normal Years (9%)	3,368	3,560	2,268	591	248	231	232	261	522	948	1,903	1,272
Below Normal Years (20%)	3,323	3,906	3,247	1,367	440	264	293	384	1,047	1,835	3,157	4,493
Dry Water Years (21%)	3,558	4,134	3,206	1,908	772	458	511	675	1,357	2,725	3,984	5,517
Critical Water Years (18%)	5,168	5,505	4,183	2,641	1,337	947	1,122	1,912	2,940	3,804	4,711	6,252

Table 4L-7-11-1b. San Joaquin River at Antioch Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	6,794	6,484	5,113	3,194	1,400	845	956	1,527	2,962	3,948	4,633	6,218
20% Exceedance	6,144	5,876	4,540	2,480	841	466	577	896	1,569	3,000	4,465	5,947
30% Exceedance	5,654	5,473	4,021	1,948	609	301	416	734	1,398	2,543	4,098	5,601
40% Exceedance	5,473	5,271	3,512	1,030	378	260	293	440	1,266	2,151	3,309	5,084
50% Exceedance	4,812	4,004	2,774	782	263	239	258	304	927	1,717	2,950	4,437
60% Exceedance	1,267	2,863	1,789	536	253	227	233	255	613	1,256	2,371	1,644
70% Exceedance	1,106	2,661	1,077	306	232	221	221	229	304	962	2,020	1,513
80% Exceedance	1,032	2,250	831	226	221	215	212	205	212	698	1,867	1,439
90% Exceedance	928	1,175	464	209	207	207	192	183	180	469	1,652	1,225
Full Simulation Period Average ^a	3,734	3,980	2,708	1,324	569	398	453	655	1,161	1,912	3,011	3,768
Wet Water Years (32%)	3,302	3,159	1,333	382	229	210	207	218	315	641	1,578	1,272
Above Normal Years (9%)	3,383	3,558	2,309	607	249	231	232	261	499	956	2,057	1,343
Below Normal Years (20%)	3,373	3,921	3,233	1,352	435	262	293	396	1,028	1,792	2,983	4,624
Dry Water Years (21%)	3,581	4,163	3,206	1,905	747	447	508	677	1,348	2,750	4,162	5,662
Critical Water Years (18%)	5,260	5,504	4,189	2,646	1,276	911	1,114	1,892	2,925	3,802	4,720	6,257

Table 4L-7-11-1c. San Joaquin River at Antioch Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	15	18	10	-86	86	-19	3	19	21	3	-36	-30
20% Exceedance	126	2	5	16	42	-4	-15	8	1	1	238	88
30% Exceedance	0	-2	14	23	-9	1	0	4	-23	0	157	163
40% Exceedance	73	14	0	-4	-18	0	0	6	-12	-91	-256	100
50% Exceedance	219	12	23	-9	-1	1	2	2	-36	-21	-143	72
60% Exceedance	39	-10	-8	-2	1	-1	0	-2	-29	14	207	83
70% Exceedance	49	-33	-48	0	0	-1	0	0	-23	-12	110	115
80% Exceedance	2	24	-20	0	0	-1	-1	0	-3	-34	136	123
90% Exceedance	23	38	6	0	0	0	0	0	-1	-6	326	67
Full Simulation Period Average ^a	59	8	-8	-7	-18	-9	-2	-1	-16	-5	61	103
Wet Water Years (32%)	82	-1	-33	-18	-2	0	0	0	-19	-5	133	121
Above Normal Years (9%)	15	-3	42	16	2	0	0	0	-23	8	154	71
Below Normal Years (20%)	50	15	-14	-15	-5	-2	0	11	-19	-43	-174	131
Dry Water Years (21%)	23	29	0	-3	-25	-11	-3	2	-9	25	178	145
Critical Water Years (18%)	92	-1	6	4	-61	-36	-8	-20	-15	-2	10	4

^a Based on the 100-year simulation period.

 \ast All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-11a. San Joaquin River at Antioch Salinity, Long-Term Average EC

Figure 4L-7-11b. San Joaquin River at Antioch Salinity, Wet Year Average EC

Figure 4L-7-11c. San Joaquin River at Antioch Salinity, Above Normal Year Average EC

Figure 4L-7-11d. San Joaquin River at Antioch Salinity, Below Normal Year Average EC

Figure 4L-7-11f. San Joaquin River at Antioch Salinity, Critical Year Average EC

Figure 4L-7-11g. San Joaquin River at Antioch Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-11h. San Joaquin River at Antioch Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-11i. San Joaquin River at Antioch Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-11j. San Joaquin River at Antioch Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-11k. San Joaquin River at Antioch Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-11I. San Joaquin River at Antioch Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-11m. San Joaquin River at Antioch Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-11n. San Joaquin River at Antioch Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-110. San Joaquin River at Antioch Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-11p. San Joaquin River at Antioch Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-11q. San Joaquin River at Antioch Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-11r. San Joaquin River at Antioch Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-12-1a. San Joaquin River at Jersey Point Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	1,982	2,080	1,818	1,203	661	342	317	391	688	1,178	1,396	1,846
20% Exceedance	1,800	1,827	1,719	1,023	461	280	277	295	403	967	1,248	1,748
30% Exceedance	1,669	1,735	1,650	817	359	260	255	282	372	762	1,178	1,691
40% Exceedance	1,592	1,649	1,590	641	287	246	246	264	344	679	1,058	1,665
50% Exceedance	1,433	1,529	1,315	487	269	234	239	246	284	595	936	1,502
60% Exceedance	416	1,066	911	349	246	225	230	231	244	421	797	707
70% Exceedance	336	965	737	272	227	222	223	221	212	350	668	565
80% Exceedance	301	737	542	224	213	211	217	201	200	253	551	484
90% Exceedance	263	483	348	210	207	207	190	179	174	203	376	373
Full Simulation Period Average ^a	1,135	1,325	1,170	625	349	262	254	279	359	615	908	1,189
Wet Water Years (32%)	1,038	1,157	749	300	222	209	202	194	199	265	489	452
Above Normal Years (9%)	1,038	1,251	1,106	428	245	232	238	227	234	333	612	485
Below Normal Years (20%)	1,036	1,278	1,340	678	313	242	248	253	315	655	1,119	1,710
Dry Water Years (21%)	1,060	1,336	1,341	823	421	277	258	275	361	886	1,167	1,628
Critical Water Years (18%)	1,556	1,699	1,564	1,012	584	380	353	490	753	1,021	1,261	1,758

Table 4L-7-12-1b. San Joaquin River at Jersey Point Salinity, Proposed Project ITPSpring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	1,986	2,088	1,850	1,201	621	339	317	392	698	1,179	1,440	1,829
20% Exceedance	1,818	1,823	1,716	1,021	454	276	272	294	396	974	1,264	1,767
30% Exceedance	1,706	1,742	1,631	834	353	262	257	283	358	783	1,194	1,709
40% Exceedance	1,619	1,663	1,551	642	291	246	246	265	333	689	1,122	1,666
50% Exceedance	1,496	1,553	1,321	492	269	236	239	245	276	589	973	1,574
60% Exceedance	438	1,022	932	350	247	225	231	232	242	419	844	801
70% Exceedance	348	974	737	270	228	222	223	221	212	347	740	656
80% Exceedance	314	756	520	224	215	211	217	201	200	249	630	593
90% Exceedance	282	495	351	210	208	207	191	179	174	203	459	459
Full Simulation Period Average ^a	1,153	1,330	1,171	621	342	260	253	279	355	616	953	1,235
Wet Water Years (32%)	1,067	1,162	740	293	221	208	202	194	197	264	546	540
Above Normal Years (9%)	1,053	1,242	1,134	436	247	232	237	227	230	350	713	563
Below Normal Years (20%)	1,042	1,282	1,338	670	311	242	248	254	308	646	1,109	1,707
Dry Water Years (21%)	1,066	1,351	1,335	809	407	273	258	275	354	900	1,257	1,683
Critical Water Years (18%)	1,582	1,699	1,577	1,021	564	369	351	488	749	1,011	1,266	1,763

Table 4L-7-12-1c. San Joaquin River at Jersey Point Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	4	8	32	-2	-40	-3	-1	1	10	1	44	-17
20% Exceedance	18	-4	-4	-2	-7	-4	-5	-1	-7	7	16	18
30% Exceedance	37	7	-19	18	-6	1	1	2	-15	21	16	17
40% Exceedance	27	14	-40	1	5	0	0	1	-11	10	65	1
50% Exceedance	63	25	6	6	-1	2	0	-1	-8	-6	36	72
60% Exceedance	22	-44	20	0	0	0	0	0	-1	-2	47	94
70% Exceedance	13	9	0	-1	1	0	0	0	0	-3	72	92
80% Exceedance	13	19	-22	0	2	0	0	0	0	-4	80	109
90% Exceedance	19	12	3	0	1	-1	1	0	0	0	83	87
Full Simulation Period Average ^a	18	5	0	-4	-7	-3	-1	0	-4	1	45	47
Wet Water Years (32%)	29	4	-9	-6	0	0	0	0	-2	-1	57	88
Above Normal Years (9%)	16	-9	27	8	2	0	0	0	-4	17	101	77
Below Normal Years (20%)	6	4	-2	-8	-2	0	0	1	-7	-9	-10	-3
Dry Water Years (21%)	6	15	-6	-14	-14	-4	0	0	-7	14	90	55
Critical Water Years (18%)	26	0	13	8	-20	-11	-3	-3	-4	-10	5	4

^a Based on the 100-year simulation period.

 \ast All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-12a. San Joaquin River at Jersey Point Salinity, Long-Term Average EC

Figure 4L-7-12b. San Joaquin River at Jersey Point Salinity, Wet Year Average EC

Figure 4L-7-12c. San Joaquin River at Jersey Point Salinity, Above Normal Year Average EC

Figure 4L-7-12d. San Joaquin River at Jersey Point Salinity, Below Normal Year Average EC

Figure 4L-7-12e. San Joaquin River at Jersey Point Salinity, Dry Year Average EC

Figure 4L-7-12f. San Joaquin River at Jersey Point Salinity, Critical Year Average EC

Figure 4L-7-12g. San Joaquin River at Jersey Point Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-12h. San Joaquin River at Jersey Point Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-12i. San Joaquin River at Jersey Point Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-12j. San Joaquin River at Jersey Point Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-12k. San Joaquin River at Jersey Point Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-12I. San Joaquin River at Jersey Point Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-12m. San Joaquin River at Jersey Point Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-12n. San Joaquin River at Jersey Point Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-120. San Joaquin River at Jersey Point Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-12p. San Joaquin River at Jersey Point Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-12q. San Joaquin River at Jersey Point Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-12r. San Joaquin River at Jersey Point Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-13-1a. San Joaquin River at San Andreas Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	890	902	922	668	423	285	277	288	334	476	587	766
20% Exceedance	795	810	877	606	341	257	261	262	251	412	541	724
30% Exceedance	707	744	835	541	296	248	252	255	243	340	503	700
40% Exceedance	679	696	780	435	266	239	245	247	236	320	451	668
50% Exceedance	638	653	692	358	249	231	239	238	223	288	396	606
60% Exceedance	252	447	546	304	238	222	228	224	212	242	352	365
70% Exceedance	225	403	448	233	222	216	220	213	204	224	307	297
80% Exceedance	215	353	362	219	213	206	213	195	195	203	271	274
90% Exceedance	203	284	267	201	203	199	183	172	172	189	225	228
Full Simulation Period Average ^a	534	589	635	412	284	238	236	237	240	307	408	524
Wet Water Years (32%)	493	533	463	254	212	202	197	187	186	203	262	264
Above Normal Years (9%)	508	586	628	330	238	226	238	221	207	222	292	276
Below Normal Years (20%)	497	553	699	444	272	234	247	240	228	312	471	721
Dry Water Years (21%)	499	573	709	506	326	250	246	251	239	380	506	653
Critical Water Years (18%)	704	749	786	588	399	301	281	310	365	443	543	742

Table 4L-7-13-1b. San Joaquin River at San Andreas Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	894	888	923	661	431	279	277	287	336	487	611	770
20% Exceedance	801	795	882	603	339	259	261	262	251	412	538	731
30% Exceedance	718	736	823	521	292	248	252	255	242	347	512	708
40% Exceedance	688	706	779	433	264	240	246	248	236	319	484	675
50% Exceedance	644	653	707	349	249	230	240	239	222	286	408	643
60% Exceedance	261	442	561	304	238	222	229	224	213	243	374	405
70% Exceedance	232	409	447	232	223	216	220	213	204	224	339	334
80% Exceedance	222	348	352	219	214	206	213	195	195	203	295	320
90% Exceedance	209	284	268	201	203	200	182	172	171	189	239	253
Full Simulation Period Average ^a	540	591	636	410	282	237	236	237	240	307	425	543
Wet Water Years (32%)	504	536	459	251	212	202	197	188	186	203	278	296
Above Normal Years (9%)	515	582	641	336	240	226	238	221	207	227	327	306
Below Normal Years (20%)	499	554	700	441	272	234	247	241	228	310	475	715
Dry Water Years (21%)	497	576	707	498	319	249	247	252	239	383	539	681
Critical Water Years (18%)	713	750	792	595	392	297	280	310	364	438	545	745

Table 4L-7-13-1c. San Joaquin River at San Andreas Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	3	-14	1	-7	8	-6	0	-1	2	10	24	4
20% Exceedance	6	-15	5	-4	-2	2	0	1	0	0	-2	7
30% Exceedance	11	-9	-12	-21	-4	0	0	0	-1	7	9	8
40% Exceedance	9	10	-1	-1	-1	1	1	1	0	-1	33	6
50% Exceedance	6	0	16	-9	0	0	1	1	0	-2	13	37
60% Exceedance	9	-5	14	1	0	0	1	0	1	1	23	40
70% Exceedance	7	6	-1	-1	1	0	0	0	0	0	32	37
80% Exceedance	7	-5	-10	0	1	0	-1	0	0	0	24	45
90% Exceedance	6	0	1	0	0	0	0	0	0	0	14	25
Full Simulation Period Average ^a	6	2	1	-2	-3	-1	0	0	0	0	16	18
Wet Water Years (32%)	10	3	-4	-3	0	-1	0	0	0	0	16	32
Above Normal Years (9%)	7	-3	13	6	2	0	0	0	0	5	35	31
Below Normal Years (20%)	3	1	1	-3	0	1	0	1	0	-1	4	-5
Dry Water Years (21%)	-2	3	-2	-9	-7	-1	0	0	0	3	33	29
Critical Water Years (18%)	9	1	6	7	-7	-4	-1	-1	-1	-4	2	3

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-13a. San Joaquin River at San Andreas Salinity, Long-Term Average EC

Figure 4L-7-13c. San Joaquin River at San Andreas Salinity, Above Normal Year Average EC

Figure 4L-7-13d. San Joaquin River at San Andreas Salinity, Below Normal Year Average EC

Figure 4L-7-13f. San Joaquin River at San Andreas Salinity, Critical Year Average EC

Figure 4L-7-13g. San Joaquin River at San Andreas Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-13h. San Joaquin River at San Andreas Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-13i. San Joaquin River at San Andreas Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-13j. San Joaquin River at San Andreas Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-13k. San Joaquin River at San Andreas Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-13I. San Joaquin River at San Andreas Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-13m. San Joaquin River at San Andreas Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-13n. San Joaquin River at San Andreas Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-130. San Joaquin River at San Andreas Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-13p. San Joaquin River at San Andreas Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-13q. San Joaquin River at San Andreas Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-13r. San Joaquin River at San Andreas Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-14-1a. San Joaquin River at Prisoners Point Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	480	529	638	493	383	317	334	315	273	306	341	428
20% Exceedance	422	461	581	461	338	293	321	298	235	275	325	388
30% Exceedance	383	413	546	422	321	279	308	285	230	247	308	372
40% Exceedance	365	390	509	388	304	273	296	276	226	239	279	360
50% Exceedance	352	372	471	346	285	262	284	270	222	228	265	337
60% Exceedance	222	292	412	309	269	257	275	257	216	209	243	256
70% Exceedance	211	275	374	284	258	252	263	246	211	203	230	223
80% Exceedance	208	252	307	255	247	241	246	211	207	198	214	217
90% Exceedance	203	240	275	235	227	224	178	161	152	187	204	203
Full Simulation Period Average ^a	328	365	454	360	296	266	275	254	220	235	272	314
Wet Water Years (32%)	311	346	377	290	256	235	217	192	180	191	213	215
Above Normal Years (9%)	324	376	466	328	309	300	307	256	215	203	223	219
Below Normal Years (20%)	314	342	477	368	301	279	309	274	221	236	299	401
Dry Water Years (21%)	309	348	489	398	304	260	294	287	227	264	314	355
Critical Water Years (18%)	395	436	521	445	347	296	306	304	284	294	323	396

Table 4L-7-14-1b. San Joaquin River at Prisoners Point Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	474	525	639	502	375	317	336	316	272	306	354	420
20% Exceedance	429	471	573	453	343	294	320	298	239	276	332	399
30% Exceedance	380	421	545	420	324	284	308	285	232	250	311	375
40% Exceedance	371	392	516	384	304	273	296	276	229	240	293	365
50% Exceedance	352	372	475	347	290	266	285	270	224	227	268	350
60% Exceedance	222	294	411	308	274	259	277	257	219	210	255	274
70% Exceedance	215	273	370	286	261	254	262	246	214	204	241	238
80% Exceedance	210	257	308	257	249	241	246	211	211	198	221	230
90% Exceedance	205	240	277	236	228	223	178	162	151	187	207	211
Full Simulation Period Average ^a	329	365	455	359	297	267	276	254	222	235	279	321
Wet Water Years (32%)	314	348	375	289	256	234	217	192	182	191	219	225
Above Normal Years (9%)	327	375	474	333	313	300	307	256	218	205	237	230
Below Normal Years (20%)	314	342	478	368	305	281	309	275	224	235	303	399
Dry Water Years (21%)	306	348	487	392	303	262	295	287	229	265	326	367
Critical Water Years (18%)	398	436	525	449	347	296	306	303	284	292	324	398

Table 4L-7-14-1c. San Joaquin River at Prisoners Point Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-5	-4	1	9	-8	0	2	1	-1	0	14	-7
20% Exceedance	7	10	-8	-7	5	1	-1	0	4	1	7	11
30% Exceedance	-3	8	0	-2	2	4	1	0	2	3	4	3
40% Exceedance	6	2	7	-4	0	0	0	0	3	1	13	5
50% Exceedance	0	0	4	1	5	4	1	0	2	-1	4	12
60% Exceedance	0	2	-1	0	5	2	1	0	3	1	12	18
70% Exceedance	4	-1	-4	2	3	1	0	0	3	1	10	16
80% Exceedance	1	5	1	2	2	-1	0	0	3	0	7	13
90% Exceedance	2	0	2	1	1	0	0	0	-1	0	3	8
Full Simulation Period Average ^a	1	1	1	0	1	1	0	0	2	0	7	7
Wet Water Years (32%)	3	2	-1	-1	1	-1	0	0	2	0	5	11
Above Normal Years (9%)	3	-1	9	5	4	0	0	-1	3	2	14	12
Below Normal Years (20%)	1	0	1	0	4	2	0	0	2	0	4	-2
Dry Water Years (21%)	-4	0	-2	-6	-1	2	1	0	2	1	13	12
Critical Water Years (18%)	3	0	4	4	-1	0	0	0	-1	-3	1	3

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-14a. San Joaquin River at Prisoners Point Salinity, Long-Term Average EC

Figure 4L-7-14b. San Joaquin River at Prisoners Point Salinity, Wet Year Average EC

Figure 4L-7-14c. San Joaquin River at Prisoners Point Salinity, Above Normal Year Average EC

Figure 4L-7-14d. San Joaquin River at Prisoners Point Salinity, Below Normal Year Average EC

Figure 4L-7-14e. San Joaquin River at Prisoners Point Salinity, Dry Year Average EC

Figure 4L-7-14f. San Joaquin River at Prisoners Point Salinity, Critical Year Average EC

Figure 4L-7-14g. San Joaquin River at Prisoners Point Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-14h. San Joaquin River at Prisoners Point Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-14i. San Joaquin River at Prisoners Point Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-14j. San Joaquin River at Prisoners Point Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-14k. San Joaquin River at Prisoners Point Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-14I. San Joaquin River at Prisoners Point Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-14m. San Joaquin River at Prisoners Point Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-14n. San Joaquin River at Prisoners Point Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-14o. San Joaquin River at Prisoners Point Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-14p. San Joaquin River at Prisoners Point Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-14q. San Joaquin River at Prisoners Point Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-14r. San Joaquin River at Prisoners Point Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-15-1a. Old River at Rock Slough Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	863	936	961	774	559	372	387	401	359	484	600	757
20% Exceedance	789	818	906	714	453	320	366	361	279	393	524	695
30% Exceedance	717	721	876	664	396	305	343	340	272	339	491	664
40% Exceedance	696	688	839	578	357	294	321	321	264	322	443	634
50% Exceedance	654	639	746	485	313	287	308	304	254	295	384	578
60% Exceedance	261	398	633	393	300	279	295	281	238	247	338	388
70% Exceedance	236	354	545	316	288	271	286	264	226	229	295	319
80% Exceedance	226	310	430	269	256	258	275	229	216	210	263	297
90% Exceedance	219	278	326	241	241	247	236	196	173	192	226	242
Full Simulation Period Average ^a	538	578	692	503	361	297	313	300	263	311	403	512
Wet Water Years (32%)	499	523	534	334	295	266	257	217	198	208	257	280
Above Normal Years (9%)	506	574	692	440	305	295	332	283	231	229	284	305
Below Normal Years (20%)	502	536	736	544	344	289	344	336	255	310	445	683
Dry Water Years (21%)	506	558	753	588	397	293	322	341	267	369	515	623
Critical Water Years (18%)	698	747	851	690	482	366	360	369	402	472	544	710

Table 4L-7-15-1b. Old River at Rock Slough Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	867	934	968	776	545	377	387	403	359	484	605	754
20% Exceedance	802	803	900	703	457	322	360	362	283	398	534	708
30% Exceedance	740	719	876	657	405	306	343	341	275	342	498	676
40% Exceedance	694	686	838	575	361	295	322	321	266	322	461	642
50% Exceedance	664	647	756	480	319	288	306	303	258	293	401	605
60% Exceedance	275	398	639	394	304	280	294	281	242	249	355	425
70% Exceedance	250	355	558	315	289	276	286	264	231	226	317	351
80% Exceedance	233	316	436	271	262	258	274	229	220	211	281	330
90% Exceedance	224	278	327	242	240	245	240	192	173	192	238	278
Full Simulation Period Average ^a	545	580	692	503	362	298	313	300	266	311	415	530
Wet Water Years (32%)	510	528	531	333	296	267	254	216	200	207	269	308
Above Normal Years (9%)	515	571	702	450	311	295	332	282	235	233	313	336
Below Normal Years (20%)	508	536	738	545	349	292	346	336	258	309	449	677
Dry Water Years (21%)	507	558	753	577	395	295	325	342	270	371	540	657
Critical Water Years (18%)	708	751	854	697	483	364	359	369	401	468	543	713

Table 4L-7-15-1c. Old River at Rock Slough Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	4	-2	6	2	-14	5	0	2	1	0	5	-3
20% Exceedance	13	-16	-6	-11	4	2	-6	1	4	4	10	12
30% Exceedance	23	-2	1	-6	9	1	0	2	3	4	8	12
40% Exceedance	-2	-2	-1	-3	5	1	2	0	2	0	18	9
50% Exceedance	9	8	10	-4	6	1	-2	-1	4	-2	17	27
60% Exceedance	14	-1	7	1	4	1	-1	0	4	3	16	38
70% Exceedance	14	0	13	-2	1	4	0	1	5	-3	21	32
80% Exceedance	7	6	6	2	5	0	-1	0	4	1	18	33
90% Exceedance	5	0	1	1	-1	-1	4	-4	0	0	11	37
Full Simulation Period Average ^a	7	2	1	-1	2	1	0	0	2	0	12	18
Wet Water Years (32%)	11	6	-3	-2	2	1	-2	-1	2	0	12	27
Above Normal Years (9%)	10	-4	10	11	6	0	-1	-1	4	4	29	31
Below Normal Years (20%)	5	0	2	0	5	3	2	0	3	-1	4	-6
Dry Water Years (21%)	0	1	0	-11	-2	2	2	1	3	2	25	35
Critical Water Years (18%)	10	4	2	7	0	-2	-1	0	-1	-4	-2	3

^a Based on the 100-year simulation period.

 \ast All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-15a. Old River at Rock Slough Salinity, Long-Term Average EC

Figure 4L-7-15b. Old River at Rock Slough Salinity, Wet Year Average EC

Figure 4L-7-15c. Old River at Rock Slough Salinity, Above Normal Year Average EC

Figure 4L-7-15d. Old River at Rock Slough Salinity, Below Normal Year Average EC

Figure 4L-7-15e. Old River at Rock Slough Salinity, Dry Year Average EC

Figure 4L-7-15f. Old River at Rock Slough Salinity, Critical Year Average EC

Figure 4L-7-15g. Old River at Rock Slough Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-15h. Old River at Rock Slough Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-15i. Old River at Rock Slough Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-15j. Old River at Rock Slough Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-15k. Old River at Rock Slough Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-15I. Old River at Rock Slough Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-15m. Old River at Rock Slough Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-15n. Old River at Rock Slough Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-150. Old River at Rock Slough Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-15p. Old River at Rock Slough Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-15q. Old River at Rock Slough Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-15r. Old River at Rock Slough Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.
Table 4L-7-16-1a. Banks Pumping Plant South Delta Exports Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	587	678	757	754	624	502	488	479	445	435	482	539
20% Exceedance	570	585	717	712	553	457	456	463	378	347	440	499
30% Exceedance	544	564	685	686	519	435	442	448	360	311	378	474
40% Exceedance	534	537	646	650	479	416	425	433	342	299	357	442
50% Exceedance	496	518	626	589	456	399	404	416	333	294	316	414
60% Exceedance	300	327	581	490	417	388	388	367	305	260	285	334
70% Exceedance	271	308	534	415	374	372	347	328	293	251	269	309
80% Exceedance	265	299	472	391	344	337	297	270	255	240	255	285
90% Exceedance	256	287	356	338	298	282	204	198	162	208	242	256
Full Simulation Period Average ^a	430	463	590	554	454	397	378	370	318	300	339	397
Wet Water Years (32%)	416	441	514	438	346	305	262	248	221	225	249	277
Above Normal Years (9%)	416	444	613	561	470	440	418	397	305	253	262	296
Below Normal Years (20%)	405	442	593	584	475	421	402	380	324	288	350	489
Dry Water Years (21%)	422	451	606	592	495	419	432	446	357	321	403	454
Critical Water Years (18%)	502	553	692	680	570	485	477	473	447	443	453	492

Table 4L-7-16-1b. Banks Pumping Plant South Delta Exports Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	588	679	752	745	621	518	491	478	446	437	478	538
20% Exceedance	574	600	715	712	569	471	457	464	385	352	442	516
30% Exceedance	554	564	684	682	533	444	449	451	374	313	384	485
40% Exceedance	536	543	650	652	489	421	428	433	353	304	364	464
50% Exceedance	505	515	627	594	459	404	413	418	345	295	323	414
60% Exceedance	308	326	585	493	424	392	389	368	314	263	300	355
70% Exceedance	277	312	538	419	380	375	342	328	302	254	275	324
80% Exceedance	269	298	469	395	350	340	297	270	259	241	263	304
90% Exceedance	258	289	356	338	304	278	205	196	162	208	250	272
Full Simulation Period Average ^a	435	465	590	556	460	400	380	370	324	300	343	406
Wet Water Years (32%)	422	445	513	437	348	303	261	247	226	226	254	290
Above Normal Years (9%)	422	444	618	573	480	442	417	396	314	256	276	315
Below Normal Years (20%)	409	442	595	588	485	428	404	381	332	290	352	488
Dry Water Years (21%)	422	450	605	587	500	427	437	448	367	323	409	472
Critical Water Years (18%)	510	557	692	687	575	491	480	475	447	440	449	492

Table 4L-7-16-1c. Banks Pumping Plant South Delta Exports Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	1	1	-4	-9	-3	15	4	0	2	1	-4	-1
20% Exceedance	3	15	-1	0	17	14	2	1	7	5	2	17
30% Exceedance	10	1	-1	-4	14	9	7	3	14	2	6	11
40% Exceedance	1	5	4	2	10	6	4	0	10	5	7	22
50% Exceedance	9	-3	1	5	2	5	8	2	12	1	7	1
60% Exceedance	8	0	4	3	7	4	1	2	9	3	15	21
70% Exceedance	6	3	4	5	5	4	-4	0	9	2	7	15
80% Exceedance	4	-1	-3	4	6	3	0	0	4	2	8	19
90% Exceedance	2	2	1	0	7	-4	1	-2	0	0	8	16
ull Simulation Period Average ^a	5	2	0	2	6	4	2	1	6	1	4	9
Wet Water Years (32%)	7	4	-1	0	2	-2	0	0	4	1	4	12
Above Normal Years (9%)	7	0	5	12	9	2	-1	-1	9	2	13	19
Below Normal Years (20%)	4	0	1	4	10	7	2	1	9	1	3	-1
Dry Water Years (21%)	0	-1	0	-5	5	8	5	2	9	2	6	18
Critical Water Years (18%)	8	5	0	7	5	6	3	1	0	-2	-4	-1

^a Based on the 100-year simulation period.

 \ast All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

* These results are displayed with water year - year type sorting.

Figure 4L-7-16a. Banks Pumping Plant South Delta Exports Salinity, Long-Term Average EC

Figure 4L-7-16b. Banks Pumping Plant South Delta Exports Salinity, Wet Year Average EC

Figure 4L-7-16c. Banks Pumping Plant South Delta Exports Salinity, Above Normal Year Average EC

Figure 4L-7-16d. Banks Pumping Plant South Delta Exports Salinity, Below Normal Year Average EC

Figure 4L-7-16e. Banks Pumping Plant South Delta Exports Salinity, Dry Year Average EC

Figure 4L-7-16f. Banks Pumping Plant South Delta Exports Salinity, Critical Year Average EC

Figure 4L-7-16g. Banks Pumping Plant South Delta Exports Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-16h. Banks Pumping Plant South Delta Exports Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-16i. Banks Pumping Plant South Delta Exports Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-16j. Banks Pumping Plant South Delta Exports Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-16k. Banks Pumping Plant South Delta Exports Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-16I. Banks Pumping Plant South Delta Exports Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-16m. Banks Pumping Plant South Delta Exports Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-16n. Banks Pumping Plant South Delta Exports Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-160. Banks Pumping Plant South Delta Exports Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-16p. Banks Pumping Plant South Delta Exports Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-16q. Banks Pumping Plant South Delta Exports Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-16r. Banks Pumping Plant South Delta Exports Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-17-1a. Jones Pumping Plant South Delta Exports Salinity, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	621	697	740	754	663	647	543	466	440	429	483	552
20% Exceedance	587	651	721	719	621	585	529	446	373	374	446	523
30% Exceedance	559	600	709	700	591	561	521	436	365	341	403	495
40% Exceedance	547	574	685	668	559	549	506	420	353	333	383	480
50% Exceedance	526	544	655	637	527	520	470	386	341	324	347	441
60% Exceedance	376	410	627	565	508	486	384	325	330	311	328	358
70% Exceedance	341	392	576	528	459	388	315	273	319	293	315	336
80% Exceedance	332	378	511	463	393	327	252	244	272	280	299	325
90% Exceedance	317	364	430	383	287	245	169	146	124	241	275	292
Full Simulation Period Average ^a	471	519	620	591	508	471	401	344	321	326	365	426
Wet Water Years (32%)	451	495	557	480	368	308	236	218	220	255	283	311
Above Normal Years (9%)	474	521	658	630	570	510	395	339	316	307	308	330
Below Normal Years (20%)	449	504	617	617	543	502	420	347	336	323	377	503
Dry Water Years (21%)	460	499	633	626	566	550	518	434	359	348	424	478
Critical Water Years (18%)	540	599	700	701	622	615	538	461	441	439	455	531

Table 4L-7-17-1b. Jones Pumping Plant South Delta Exports Salinity, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	618	702	744	754	668	648	543	466	443	428	482	549
20% Exceedance	587	652	715	724	635	600	531	447	384	380	446	529
30% Exceedance	570	603	704	699	607	567	521	436	371	343	408	510
40% Exceedance	548	574	680	665	569	553	507	420	362	333	388	487
50% Exceedance	532	545	657	640	535	535	471	386	350	323	353	458
60% Exceedance	380	412	623	573	516	487	384	325	341	307	333	383
70% Exceedance	343	391	577	534	470	388	315	274	328	294	318	355
80% Exceedance	337	378	521	464	393	327	252	245	276	280	305	341
90% Exceedance	319	366	429	385	288	245	170	147	124	241	277	298
Full Simulation Period Average ^a	474	520	620	594	515	474	401	344	326	325	369	435
Wet Water Years (32%)	456	498	556	481	370	307	236	218	224	254	287	322
Above Normal Years (9%)	479	522	662	640	580	510	395	339	326	306	319	349
Below Normal Years (20%)	452	503	618	621	552	507	421	347	345	323	380	501
Dry Water Years (21%)	460	498	633	624	579	557	519	435	366	348	434	498
Critical Water Years (18%)	545	602	700	707	627	621	539	461	440	436	452	533

Table 4L-7-17-1c. Jones Pumping Plant South Delta Exports Salinity, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-2	5	3	0	4	1	0	0	3	-1	-1	-3
20% Exceedance	-1	1	-6	5	14	15	2	0	11	5	0	6
30% Exceedance	11	3	-5	-1	16	7	0	1	6	2	4	15
40% Exceedance	1	0	-4	-3	10	4	1	0	9	1	5	7
50% Exceedance	6	1	2	3	8	15	1	0	8	-1	7	17
60% Exceedance	5	2	-4	8	7	0	0	0	11	-4	4	26
70% Exceedance	2	-1	1	7	11	0	0	0	8	1	3	18
80% Exceedance	5	1	10	1	1	1	0	0	4	1	6	15
90% Exceedance	2	2	-1	1	0	0	0	1	0	0	1	5
Full Simulation Period Average ^a	3	1	0	3	7	3	0	0	5	-1	4	10
Wet Water Years (32%)	4	3	-1	1	2	-1	0	0	4	-1	4	11
Above Normal Years (9%)	5	1	4	10	10	0	0	0	9	-1	10	19
Below Normal Years (20%)	3	0	1	3	9	5	1	0	9	0	2	-2
Dry Water Years (21%)	0	-1	-1	-2	13	7	1	0	7	1	10	20
Critical Water Years (18%)	5	4	1	6	5	6	1	0	-1	-2	-3	2

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

* These results are displayed with water year - year type sorting.

Figure 4L-7-17a. Jones Pumping Plant South Delta Exports Salinity, Long-Term Average EC

Figure 4L-7-17b. Jones Pumping Plant South Delta Exports Salinity, Wet Year Average EC

Figure 4L-7-17c. Jones Pumping Plant South Delta Exports Salinity, Above Normal Year Average EC

Figure 4L-7-17d. Jones Pumping Plant South Delta Exports Salinity, Below Normal Year Average EC

Figure 4L-7-17e. Jones Pumping Plant South Delta Exports Salinity, Dry Year Average EC

Figure 4L-7-17f. Jones Pumping Plant South Delta Exports Salinity, Critical Year Average EC

Figure 4L-7-17g. Jones Pumping Plant South Delta Exports Salinity, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-17h. Jones Pumping Plant South Delta Exports Salinity, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-17i. Jones Pumping Plant South Delta Exports Salinity, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-17j. Jones Pumping Plant South Delta Exports Salinity, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-17k. Jones Pumping Plant South Delta Exports Salinity, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-17I. Jones Pumping Plant South Delta Exports Salinity, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-17m. Jones Pumping Plant South Delta Exports Salinity, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-17n. Jones Pumping Plant South Delta Exports Salinity, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-170. Jones Pumping Plant South Delta Exports Salinity, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-17p. Jones Pumping Plant South Delta Exports Salinity, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-17q. Jones Pumping Plant South Delta Exports Salinity, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-17r. Jones Pumping Plant South Delta Exports Salinity, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-18-1a. Old River at Highway 4, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	715	802	846	775	583	436	481	476	414	454	529	644
20% Exceedance	680	708	813	709	502	396	464	447	327	362	473	590
30% Exceedance	630	636	787	667	470	381	435	417	311	329	435	561
40% Exceedance	614	611	742	625	426	367	401	399	303	313	401	542
50% Exceedance	585	571	687	550	393	357	384	374	291	301	351	493
60% Exceedance	272	360	624	441	375	342	371	329	275	255	310	359
70% Exceedance	256	331	542	390	351	336	353	304	263	246	280	316
80% Exceedance	250	303	464	339	314	317	330	266	246	229	264	293
90% Exceedance	240	287	336	291	293	299	252	232	195	205	237	248
Full Simulation Period Average ^a	483	519	642	533	418	361	381	357	295	307	370	454
Wet Water Years (32%)	455	480	526	395	345	314	301	255	222	221	254	279
Above Normal Years (9%)	460	508	655	502	390	377	405	353	269	243	274	302
Below Normal Years (20%)	456	489	664	567	415	364	391	372	292	300	396	583
Dry Water Years (21%)	462	500	681	592	451	358	423	429	309	345	461	538
Critical Water Years (18%)	598	648	772	686	527	439	450	438	423	452	488	599

Table 4L-7-18-1b. Old River at Highway 4, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	731	805	855	769	582	443	483	476	413	453	529	634
20% Exceedance	676	702	812	701	522	398	465	449	332	365	474	607
30% Exceedance	645	636	787	670	479	382	435	418	317	332	441	582
40% Exceedance	619	614	739	631	438	370	402	399	310	313	409	547
50% Exceedance	585	574	694	541	402	357	386	374	298	298	369	521
60% Exceedance	283	358	615	448	381	346	374	330	283	257	327	389
70% Exceedance	267	326	541	393	362	339	353	305	270	247	296	338
80% Exceedance	258	309	468	343	321	319	331	266	250	230	273	318
90% Exceedance	245	289	341	294	296	297	252	223	196	205	247	275
Full Simulation Period Average ^a	489	521	643	534	424	364	381	356	300	306	378	468
Wet Water Years (32%)	464	486	524	395	349	312	298	253	226	222	262	299
Above Normal Years (9%)	469	504	663	515	401	378	405	351	277	246	295	326
Below Normal Years (20%)	461	488	666	570	425	369	393	372	299	300	399	579
Dry Water Years (21%)	463	500	681	583	455	364	426	431	315	346	477	566
Critical Water Years (18%)	607	653	773	692	532	442	451	438	423	449	485	601

Table 4L-7-18-1c. Old River at Highway 4, Proposed Project ITP Spring Outflow091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	16	3	10	-6	-1	7	2	0	-1	0	0	-10
20% Exceedance	-4	-7	-1	-8	21	2	2	1	5	3	1	17
30% Exceedance	15	0	-1	4	8	1	0	1	6	3	6	20
40% Exceedance	4	4	-3	6	13	3	1	1	7	0	7	5
50% Exceedance	0	3	7	-9	9	0	2	0	8	-3	18	29
60% Exceedance	11	-2	-9	7	6	4	3	1	8	2	16	30
70% Exceedance	11	-5	-1	3	12	3	-1	1	7	1	16	22
80% Exceedance	8	6	4	4	8	2	1	0	4	1	9	24
90% Exceedance	5	2	4	3	3	-3	0	-9	0	0	10	27
Full Simulation Period Average ^a	6	2	0	1	6	3	1	0	5	0	8	14
Wet Water Years (32%)	9	6	-3	0	4	-1	-2	-2	4	0	8	19
Above Normal Years (9%)	8	-4	7	12	11	0	0	-2	8	3	20	24
Below Normal Years (20%)	5	0	2	2	10	6	2	0	7	0	3	-4
Dry Water Years (21%)	1	0	0	-9	4	6	4	1	7	1	16	28
Critical Water Years (18%)	8	5	1	6	5	3	1	0	0	-3	-3	2

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-18a. Old River at Highway 4, Long-Term Average EC

Figure 4L-7-18b. Old River at Highway 4, Wet Year Average EC

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999). *These results are displayed with water year - year type sorting.

Figure 4L-7-18e. Old River at Highway 4, Dry Year Average EC

Figure 4L-7-18f. Old River at Highway 4, Critical Year Average EC

Figure 4L-7-18g. Old River at Highway 4, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-18h. Old River at Highway 4, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-18i. Old River at Highway 4, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-18j. Old River at Highway 4, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-18k. Old River at Highway 4, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-18I. Old River at Highway 4, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-18m. Old River at Highway 4, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-18n. Old River at Highway 4, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-180. Old River at Highway 4, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-18p. Old River at Highway 4, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-18q. Old River at Highway 4, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-18r. Old River at Highway 4, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-19-1a. Victoria Canal, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	505	610	631	655	599	539	538	515	405	386	396	427
20% Exceedance	456	494	591	625	557	491	517	466	350	293	357	395
30% Exceedance	435	456	568	598	530	462	492	450	341	281	320	376
40% Exceedance	425	427	547	572	500	452	461	419	328	270	297	354
50% Exceedance	395	405	523	531	480	438	438	408	321	264	281	340
60% Exceedance	314	331	490	475	459	428	417	363	305	258	264	288
70% Exceedance	292	298	445	441	413	400	367	319	297	251	250	267
80% Exceedance	284	291	422	398	385	381	311	272	268	245	245	262
90% Exceedance	272	283	360	356	348	338	242	204	172	214	236	251
Full Simulation Period Average ^a	383	409	508	514	476	434	416	374	307	277	296	333
Wet Water Years (32%)	361	381	457	454	407	366	309	256	230	230	240	259
Above Normal Years (9%)	385	420	530	535	513	493	469	381	300	254	242	266
Below Normal Years (20%)	371	390	501	521	497	463	433	394	317	262	283	359
Dry Water Years (21%)	373	390	509	523	490	438	482	467	335	281	335	366
Critical Water Years (18%)	445	499	593	594	540	491	484	451	404	382	391	433

Table 4L-7-19-1b. Victoria Canal, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	499	604	631	652	606	548	539	515	407	385	394	420
20% Exceedance	457	495	585	622	560	496	517	466	359	294	356	403
30% Exceedance	441	456	567	596	538	471	494	452	345	283	329	383
40% Exceedance	425	425	548	578	513	458	462	419	333	272	298	371
50% Exceedance	408	408	526	528	494	445	439	408	328	266	285	347
60% Exceedance	312	330	490	484	461	431	420	364	312	259	265	295
70% Exceedance	292	300	448	442	420	402	367	318	305	252	251	273
80% Exceedance	285	290	422	406	390	381	312	272	273	246	246	263
90% Exceedance	275	285	365	357	350	337	240	203	173	214	238	255
Full Simulation Period Average ^a	384	410	507	516	484	437	417	374	312	277	297	337
Wet Water Years (32%)	363	384	455	455	410	361	308	256	234	230	241	259
Above Normal Years (9%)	388	419	533	545	524	494	469	380	307	255	247	270
Below Normal Years (20%)	373	390	502	525	509	469	435	394	324	264	284	358
Dry Water Years (21%)	370	386	510	518	498	448	487	468	342	282	340	380
Critical Water Years (18%)	449	501	592	597	550	498	486	451	404	380	388	435

Table 4L-7-19-1c. Victoria Canal, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	-5	-6	0	-3	7	9	1	0	2	-1	-2	-6
20% Exceedance	1	1	-7	-3	3	5	0	-1	10	0	-1	8
30% Exceedance	6	0	-1	-2	9	9	2	1	4	2	9	7
40% Exceedance	-1	-2	1	6	13	6	2	0	5	2	1	17
50% Exceedance	13	2	3	-3	15	7	1	1	7	3	5	8
60% Exceedance	-2	-1	1	9	2	3	3	1	8	1	1	7
70% Exceedance	0	2	3	2	8	2	0	-1	8	0	1	6
80% Exceedance	1	-1	0	8	5	0	1	0	5	1	2	1
90% Exceedance	2	2	6	1	2	-1	-2	0	1	0	2	4
Full Simulation Period Average ^a	1	1	0	2	8	3	2	0	5	1	1	4
Wet Water Years (32%)	2	3	-2	1	3	-5	-1	-1	4	1	1	1
Above Normal Years (9%)	3	0	3	10	12	1	0	-1	7	1	5	4
Below Normal Years (20%)	2	0	1	4	11	6	2	0	7	2	1	-1
Dry Water Years (21%)	-3	-4	0	-5	8	10	5	1	7	1	5	14
Critical Water Years (18%)	4	2	-1	4	10	7	2	0	0	-2	-3	2

^a Based on the 100-year simulation period.

 \ast All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-19a. Victoria Canal, Long-Term Average EC

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999). *These results are displayed with water year - year type sorting.

Figure 4L-7-19b. Victoria Canal, Wet Year Average EC

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999). *These results are displayed with water year - year type sorting.

Figure 4L-7-19c. Victoria Canal, Above Normal Year Average EC

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999). *These results are displayed with water year - year type sorting.

Figure 4L-7-19d. Victoria Canal, Below Normal Year Average EC

Figure 4L-7-19f. Victoria Canal, Critical Year Average EC

Figure 4L-7-19g. Victoria Canal, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-19h. Victoria Canal, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-19i. Victoria Canal, December EC

Figure 4L-7-19j. Victoria Canal, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-19k. Victoria Canal, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-19I. Victoria Canal, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-19m. Victoria Canal, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-19n. Victoria Canal, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-19o. Victoria Canal, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-19p. Victoria Canal, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-19q. Victoria Canal, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-19r. Victoria Canal, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-20-1a. Montezuma Slough at Hunter Cut, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	15,664	14,727	14,424	10,729	7,247	6,676	8,239	9,710	13,553	16,551	18,231	15,524
20% Exceedance	15,094	13,919	13,005	9,588	5,617	4,857	6,178	8,179	10,315	13,014	16,330	15,166
30% Exceedance	14,381	13,471	12,054	8,170	3,952	2,915	4,698	7,080	9,459	10,622	11,645	14,909
40% Exceedance	13,787	12,943	11,404	6,794	2,908	2,377	3,309	4,978	8,663	8,862	10,889	14,039
50% Exceedance	13,144	12,658	10,332	5,724	2,037	1,633	2,513	3,528	7,201	7,703	10,512	12,823
60% Exceedance	10,113	12,363	8,601	3,191	1,248	794	1,442	2,568	6,399	7,239	9,947	11,299
70% Exceedance	9,867	11,986	5,949	1,387	562	556	1,125	1,655	3,830	6,213	8,794	11,065
80% Exceedance	9,694	11,055	4,108	717	413	339	593	757	1,945	5,042	8,071	10,527
90% Exceedance	9,333	7,589	2,384	383	328	293	340	452	921	3,837	6,527	9,528
Full Simulation Period Average ^a	12,169	11,974	8,986	5,376	2,860	2,523	3,378	4,618	7,043	8,876	11,345	12,553
Wet Water Years (32%)	11,312	10,439	5,330	1,599	517	458	778	1,297	2,714	5,672	9,417	9,781
Above Normal Years (9%)	11,729	12,021	9,682	3,916	1,239	913	1,342	2,234	4,497	4,692	6,444	9,717
Below Normal Years (20%)	11,807	12,146	10,255	5,787	2,779	1,989	2,567	3,765	7,006	6,910	8,609	14,860
Dry Water Years (21%)	12,351	12,546	10,263	8,142	4,442	3,794	5,146	6,721	9,299	11,375	13,246	13,573
Critical Water Years (18%)	14,100	13,822	12,240	9,137	6,080	6,112	7,856	10,210	13,421	15,936	18,044	15,148

Table 4L-7-20-1b. Montezuma Slough at Hunter Cut, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	15,478	14,684	14,558	11,431	6,916	6,521	8,247	9,783	13,554	16,553	18,240	15,089
20% Exceedance	14,544	13,899	12,658	9,591	5,412	4,996	6,189	8,139	10,320	12,920	15,979	14,211
30% Exceedance	14,039	13,193	12,165	8,172	3,751	2,761	4,677	7,213	9,388	11,052	13,495	13,540
40% Exceedance	13,632	12,883	11,476	6,740	2,864	2,310	3,339	4,987	8,549	9,728	11,658	13,088
50% Exceedance	12,630	12,619	10,312	5,510	1,964	1,600	2,479	3,531	7,192	8,863	11,118	12,301
60% Exceedance	10,124	12,284	8,691	3,121	1,226	793	1,427	2,613	6,402	8,083	10,683	11,343
70% Exceedance	9,890	11,824	6,190	1,400	558	567	1,132	1,651	3,593	6,951	10,283	11,189
80% Exceedance	9,725	10,762	4,029	894	423	347	595	759	1,825	5,049	9,643	10,592
90% Exceedance	6,994	7,641	2,305	382	328	291	350	452	885	4,147	8,447	8,121
Full Simulation Period Average ^a	11,733	11,889	9,020	5,377	2,826	2,497	3,368	4,666	7,003	9,363	12,136	11,967
Wet Water Years (32%)	10,945	10,358	5,428	1,698	530	463	782	1,299	2,612	5,602	9,659	10,092
Above Normal Years (9%)	11,354	11,951	9,771	3,610	1,146	906	1,342	2,247	4,403	5,885	8,465	7,944
Below Normal Years (20%)	11,372	12,060	10,324	5,776	2,751	1,943	2,555	3,838	6,985	8,416	10,224	12,434
Dry Water Years (21%)	11,989	12,503	10,202	7,948	4,245	3,699	5,112	6,727	9,314	11,852	14,239	13,371
Critical Water Years (18%)	13,426	13,673	12,199	9,355	6,172	6,123	7,850	10,375	13,436	15,935	18,048	15,153

Table 4L-7-20-1c. Montezuma Slough at Hunter Cut, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-186	-43	134	702	-331	-155	8	73	1	1	9	-435
20% Exceedance	-550	-20	-347	3	-205	139	12	-39	5	-94	-352	-955
30% Exceedance	-342	-279	111	2	-201	-153	-21	133	-71	429	1,850	-1,369
40% Exceedance	-156	-60	72	-54	-45	-68	30	9	-114	866	770	-951
50% Exceedance	-514	-40	-20	-214	-73	-32	-33	3	-9	1,160	605	-523
60% Exceedance	11	-79	90	-70	-22	-1	-16	46	3	843	736	44
70% Exceedance	23	-163	242	13	-4	11	7	-4	-237	737	1,489	124
80% Exceedance	30	-293	-79	176	10	8	3	1	-120	8	1,572	65
90% Exceedance	-2,340	52	-79	-1	0	-1	10	0	-36	310	1,920	-1,406
Full Simulation Period Average ^a	-435	-85	33	1	-35	-26	-10	47	-40	486	791	-586
Wet Water Years (32%)	-366	-81	98	99	13	5	4	2	-103	-70	242	311
Above Normal Years (9%)	-375	-70	88	-306	-93	-7	0	13	-94	1,193	2,021	-1,773
Below Normal Years (20%)	-435	-86	70	-11	-28	-46	-12	73	-21	1,507	1,615	-2,425
Dry Water Years (21%)	-362	-43	-61	-194	-197	-95	-34	6	15	477	993	-201
Critical Water Years (18%)	-674	-148	-41	218	93	10	-6	166	15	-1	4	5

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-20a. Montezuma Slough at Hunter Cut, Long-Term Average EC

Figure 4L-7-20c. Montezuma Slough at Hunter Cut, Above Normal Year Average EC

Figure 4L-7-20d. Montezuma Slough at Hunter Cut, Below Normal Year Average EC

Figure 4L-7-20e. Montezuma Slough at Hunter Cut, Dry Year Average EC

Figure 4L-7-20f. Montezuma Slough at Hunter Cut, Critical Year Average EC

Figure 4L-7-20g. Montezuma Slough at Hunter Cut, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-20h. Montezuma Slough at Hunter Cut, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-20i. Montezuma Slough at Hunter Cut, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-20j. Montezuma Slough at Hunter Cut, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-20k. Montezuma Slough at Hunter Cut, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-20I. Montezuma Slough at Hunter Cut, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-20m. Montezuma Slough at Hunter Cut, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-20n. Montezuma Slough at Hunter Cut, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-200. Montezuma Slough at Hunter Cut, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-20p. Montezuma Slough at Hunter Cut, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-20q. Montezuma Slough at Hunter Cut, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-20r. Montezuma Slough at Hunter Cut, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-21-1a. Montezuma Slough at Beldons Landing, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	11,638	10,543	11,979	7,871	4,233	3,888	5,885	6,832	10,300	13,687	15,582	11,106
20% Exceedance	10,840	10,031	9,351	6,732	3,286	2,606	3,548	5,825	7,882	10,196	13,066	10,725
30% Exceedance	9,872	9,787	8,230	5,790	2,250	1,655	2,480	4,961	6,729	7,334	8,329	10,293
40% Exceedance	9,401	9,561	7,630	4,539	1,677	1,257	1,829	3,146	5,456	5,267	7,585	9,793
50% Exceedance	8,756	9,214	6,891	3,498	1,070	719	1,237	2,169	4,300	4,583	6,930	9,369
60% Exceedance	8,300	8,790	5,756	1,778	605	487	740	1,332	3,612	3,504	6,379	9,181
70% Exceedance	8,075	8,378	4,246	941	375	309	525	840	1,852	3,095	5,227	8,635
80% Exceedance	7,777	7,756	2,309	506	292	267	332	380	875	2,352	4,689	7,973
90% Exceedance	7,118	4,906	1,300	284	247	240	229	237	402	1,694	3,360	6,296
Full Simulation Period Average ^a	8,994	8,624	6,427	3,681	1,686	1,478	2,070	3,105	4,826	5,992	8,166	9,101
Wet Water Years (32%)	8,257	7,407	3,828	1,115	344	295	400	706	1,471	3,418	6,391	7,952
Above Normal Years (9%)	8,785	8,691	7,296	3,695	1,002	534	663	1,169	2,545	1,929	3,232	6,434
Below Normal Years (20%)	8,733	8,822	7,321	3,779	1,560	1,231	1,414	2,310	4,220	3,357	5,042	10,315
Dry Water Years (21%)	9,234	9,199	7,344	5,693	2,729	2,268	3,176	4,664	6,617	7,985	9,796	9,437
Critical Water Years (18%)	10,421	9,865	8,550	5,778	3,339	3,408	5,180	7,403	10,516	13,205	15,359	10,737

Table 4L-7-21-1b. Montezuma Slough at Beldons Landing, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	11,031	10,553	11,766	7,992	3,836	3,837	5,935	6,959	10,357	13,687	15,584	10,731
20% Exceedance	10,219	10,031	9,392	6,753	3,192	2,568	3,890	5,814	7,881	10,043	12,900	9,865
30% Exceedance	9,489	9,794	8,147	5,756	2,117	1,583	2,421	4,945	6,648	6,943	8,274	9,551
40% Exceedance	9,068	9,431	7,718	4,463	1,495	1,223	1,785	3,222	5,418	5,839	7,944	9,447
50% Exceedance	8,426	8,829	6,863	3,331	1,114	715	1,226	2,175	4,175	4,463	7,636	9,223
60% Exceedance	8,156	8,519	5,733	1,758	594	487	728	1,351	3,670	4,257	6,770	8,640
70% Exceedance	7,985	7,980	4,652	966	374	310	527	835	1,747	3,269	5,260	7,959
80% Exceedance	7,623	7,202	2,474	560	291	267	332	381	825	2,361	4,852	6,562
90% Exceedance	2,741	4,943	1,295	282	248	240	229	238	387	1,754	3,868	3,630
Full Simulation Period Average ^a	8,163	8,398	6,480	3,670	1,646	1,455	2,061	3,136	4,802	6,083	8,260	8,303
Wet Water Years (32%)	7,631	7,174	4,010	1,292	351	297	403	707	1,423	3,331	6,534	8,227
Above Normal Years (9%)	8,059	8,448	7,320	3,179	858	524	663	1,174	2,507	2,315	3,799	3,460
Below Normal Years (20%)	7,836	8,571	7,480	3,789	1,557	1,202	1,400	2,351	4,107	3,942	5,107	7,397
Dry Water Years (21%)	8,478	9,052	7,205	5,368	2,469	2,172	3,140	4,661	6,632	7,818	9,713	9,266
Critical Water Years (18%)	9,160	9,594	8,493	6,032	3,481	3,423	5,181	7,526	10,596	13,214	15,365	10,741

Table 4L-7-21-1c. Montezuma Slough at Beldons Landing, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-607	11	-213	121	-398	-51	50	127	57	1	2	-375
20% Exceedance	-621	-1	41	22	-94	-39	343	-12	-1	-153	-166	-859
30% Exceedance	-383	7	-83	-34	-133	-72	-58	-16	-81	-391	-55	-742
40% Exceedance	-333	-130	89	-75	-182	-34	-44	76	-38	572	360	-345
50% Exceedance	-330	-385	-28	-166	44	-4	-11	6	-125	-120	706	-146
60% Exceedance	-144	-271	-22	-20	-10	-1	-12	19	57	753	391	-540
70% Exceedance	-90	-398	406	25	-1	0	2	-4	-105	173	34	-676
80% Exceedance	-154	-554	164	54	0	1	-1	1	-50	10	163	-1,410
90% Exceedance	-4,377	37	-5	-1	1	0	-1	1	-15	60	508	-2,666
Full Simulation Period Average ^a	-831	-226	53	-10	-40	-24	-9	31	-24	90	93	-798
Wet Water Years (32%)	-626	-232	182	177	7	2	3	1	-48	-87	143	275
Above Normal Years (9%)	-726	-243	24	-516	-144	-10	-1	5	-39	386	567	-2,974
Below Normal Years (20%)	-897	-250	159	11	-3	-29	-14	41	-113	584	65	-2,918
Dry Water Years (21%)	-756	-146	-139	-325	-260	-97	-36	-3	15	-167	-84	-171
Critical Water Years (18%)	-1,262	-270	-57	254	143	15	1	123	80	9	6	5

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-21a. Montezuma Slough at Beldons Landing, Long-Term Average EC

Figure 4L-7-21b. Montezuma Slough at Beldons Landing, Wet Year Average EC

Figure 4L-7-21c. Montezuma Slough at Beldons Landing, Above Normal Year Average EC

Figure 4L-7-21d. Montezuma Slough at Beldons Landing, Below Normal Year Average EC

Figure 4L-7-21f. Montezuma Slough at Beldons Landing, Critical Year Average EC

Figure 4L-7-21g. Montezuma Slough at Beldons Landing, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-21h. Montezuma Slough at Beldons Landing, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-21i. Montezuma Slough at Beldons Landing, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-21j. Montezuma Slough at Beldons Landing, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-21k. Montezuma Slough at Beldons Landing, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-21I. Montezuma Slough at Beldons Landing, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-21m. Montezuma Slough at Beldons Landing, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-21n. Montezuma Slough at Beldons Landing, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-210. Montezuma Slough at Beldons Landing, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-21p. Montezuma Slough at Beldons Landing, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-21q. Montezuma Slough at Beldons Landing, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-21r. Montezuma Slough at Beldons Landing, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-22-1a. Montezuma Slough at National Steel, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	11,100	10,370	9,108	6,213	3,155	2,999	3,830	4,974	7,889	10,592	12,117	10,481
20% Exceedance	10,436	9,651	8,295	4,891	1,951	1,329	2,332	3,586	5,325	7,403	10,287	9,947
30% Exceedance	9,657	8,955	7,621	3,882	1,247	706	1,380	2,933	4,610	5,604	7,570	9,413
40% Exceedance	9,241	8,330	6,530	2,960	784	511	824	1,600	3,844	4,149	6,339	8,708
50% Exceedance	8,282	7,451	5,216	1,978	499	353	593	987	2,892	3,711	5,391	8,106
60% Exceedance	4,926	7,188	4,228	933	276	237	334	590	2,378	3,130	5,164	5,695
70% Exceedance	4,671	6,642	2,510	359	225	210	271	352	1,053	2,644	4,844	5,183
80% Exceedance	4,450	5,566	1,396	238	206	199	214	213	404	1,807	4,211	4,898
90% Exceedance	4,125	3,449	633	194	194	194	189	182	216	1,314	3,387	3,840
Full Simulation Period Average ^a	7,399	7,383	5,051	2,619	1,085	882	1,250	1,966	3,391	4,625	6,608	7,274
Wet Water Years (32%)	6,582	6,031	2,443	609	220	206	249	390	895	2,075	4,193	4,395
Above Normal Years (9%)	6,996	7,088	5,075	1,660	378	266	312	573	1,566	1,916	3,431	3,962
Below Normal Years (20%)	6,955	7,436	5,991	2,598	836	522	681	1,223	2,943	3,270	5,257	8,433
Dry Water Years (21%)	7,458	7,795	5,976	4,155	1,657	1,231	1,800	2,719	4,481	6,271	8,389	9,224
Critical Water Years (18%)	9,481	9,396	7,554	4,902	2,586	2,384	3,491	5,412	7,965	10,097	11,914	10,487

Table 4L-7-22-1b. Montezuma Slough at National Steel, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	11,105	10,428	9,135	6,417	3,128	2,671	3,830	5,012	7,893	10,581	12,117	10,522
20% Exceedance	10,247	9,602	8,161	5,208	1,964	1,372	2,269	3,560	5,342	7,178	9,910	9,909
30% Exceedance	9,543	8,914	7,670	3,886	1,203	659	1,356	3,004	4,588	5,576	7,783	9,274
40% Exceedance	9,117	8,310	6,520	2,962	802	502	802	1,675	3,817	4,437	5,931	8,310
50% Exceedance	8,042	7,544	5,164	1,866	477	349	597	988	2,870	3,795	5,373	6,984
60% Exceedance	4,994	7,145	4,237	873	272	237	330	594	2,361	3,246	5,079	5,592
70% Exceedance	4,734	6,292	2,659	349	225	211	270	352	955	2,571	4,862	5,334
80% Exceedance	4,442	5,104	1,391	235	207	199	216	213	376	1,746	4,499	5,076
90% Exceedance	2,309	3,486	636	194	194	194	189	182	212	1,234	3,624	2,794
Full Simulation Period Average ^a	7,093	7,275	5,062	2,609	1,060	860	1,243	1,977	3,375	4,621	6,626	7,017
Wet Water Years (32%)	6,388	5,914	2,487	675	219	207	250	390	855	2,034	4,352	4,571
Above Normal Years (9%)	6,713	6,959	5,118	1,452	356	265	312	575	1,533	1,992	3,673	2,767
Below Normal Years (20%)	6,628	7,315	6,021	2,597	833	506	676	1,258	2,887	3,416	5,008	7,328
Dry Water Years (21%)	7,165	7,738	5,946	3,992	1,542	1,186	1,780	2,718	4,507	6,146	8,366	9,292
Critical Water Years (18%)	8,966	9,269	7,514	5,026	2,597	2,334	3,475	5,435	7,995	10,096	11,915	10,492

Table 4L-7-22-1c. Montezuma Slough at National Steel, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	5	58	28	204	-27	-328	0	38	4	-11	0	41
20% Exceedance	-188	-49	-134	317	13	43	-63	-27	17	-224	-377	-38
30% Exceedance	-114	-41	48	4	-44	-48	-24	71	-22	-27	213	-138
40% Exceedance	-123	-20	-10	2	18	-9	-22	74	-26	287	-408	-398
50% Exceedance	-240	93	-51	-111	-21	-3	4	1	-22	84	-17	-1,122
60% Exceedance	68	-43	9	-60	-4	1	-5	3	-16	116	-85	-103
70% Exceedance	63	-350	149	-10	0	0	-1	-1	-98	-73	18	151
80% Exceedance	-8	-462	-5	-2	1	-1	1	0	-28	-61	288	178
90% Exceedance	-1,816	36	3	0	0	0	0	0	-4	-80	238	-1,046
Full Simulation Period Average ^a	-307	-108	11	-10	-25	-21	-8	11	-16	-4	18	-257
Wet Water Years (32%)	-194	-117	44	66	-1	1	1	0	-40	-41	159	176
Above Normal Years (9%)	-283	-129	43	-208	-23	-1	-1	2	-33	76	242	-1,194
Below Normal Years (20%)	-326	-121	30	-1	-3	-16	-5	35	-55	146	-249	-1,105
Dry Water Years (21%)	-292	-57	-31	-163	-115	-45	-19	-1	26	-125	-23	67
Critical Water Years (18%)	-514	-127	-39	123	11	-49	-16	23	30	-1	1	5

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-22a. Montezuma Slough at National Steel, Long-Term Average EC

Figure 4L-7-22c. Montezuma Slough at National Steel, Above Normal Year Average EC

Figure 4L-7-22d. Montezuma Slough at National Steel, Below Normal Year Average EC

Figure 4L-7-22e. Montezuma Slough at National Steel, Dry Year Average EC

Figure 4L-7-22f. Montezuma Slough at National Steel, Critical Year Average EC

Figure 4L-7-22g. Montezuma Slough at National Steel, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-22h. Montezuma Slough at National Steel, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-22i. Montezuma Slough at National Steel, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-22j. Montezuma Slough at National Steel, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-22k. Montezuma Slough at National Steel, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-22I. Montezuma Slough at National Steel, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-22m. Montezuma Slough at National Steel, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-22n. Montezuma Slough at National Steel, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-220. Montezuma Slough at National Steel, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-22p. Montezuma Slough at National Steel, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-22q. Montezuma Slough at National Steel, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-22r. Montezuma Slough at National Steel, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-23-1a. Suisun Bay near Ryer, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	19,332	18,155	15,517	12,669	7,645	6,660	7,333	9,049	12,573	15,250	16,766	18,629
20% Exceedance	18,132	17,319	14,844	10,724	5,343	4,364	5,535	6,945	9,428	12,088	15,254	17,697
30% Exceedance	17,508	16,629	13,647	9,061	3,265	2,166	4,019	6,119	8,502	11,719	14,425	16,741
40% Exceedance	17,080	15,899	12,755	5,700	2,077	1,615	2,772	4,303	8,147	10,316	13,430	16,127
50% Exceedance	15,527	13,991	10,933	4,381	1,219	1,059	1,731	2,850	6,689	9,410	11,929	14,706
60% Exceedance	8,362	11,742	8,516	2,785	710	474	1,024	2,055	5,576	7,820	10,411	9,185
70% Exceedance	8,119	11,348	5,094	735	276	311	741	1,149	3,366	7,008	9,856	8,896
80% Exceedance	7,989	10,526	2,289	310	212	213	327	476	1,497	5,619	9,373	8,731
90% Exceedance	7,668	7,180	1,188	199	196	190	212	281	627	4,315	8,629	8,264
Full Simulation Period Average ^a	13,172	13,255	9,353	5,320	2,732	2,219	2,951	4,028	6,401	9,142	12,055	13,184
Wet Water Years (32%)	12,021	11,265	4,937	1,190	302	295	572	986	2,319	4,956	8,426	7,814
Above Normal Years (9%)	12,423	12,844	8,860	2,499	657	572	936	1,736	3,947	6,552	9,586	8,444
Below Normal Years (20%)	12,526	13,279	11,021	5,697	2,254	1,341	1,994	3,049	6,588	9,317	12,162	15,022
Dry Water Years (21%)	13,199	13,721	11,008	8,207	4,186	3,207	4,459	5,704	8,355	11,752	14,591	16,946
Critical Water Years (18%)	16,279	16,428	13,668	10,287	6,922	6,286	7,495	9,716	12,395	14,639	16,663	18,670

Table 4L-7-23-1b. Suisun Bay near Ryer, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	19,334	18,177	15,669	12,571	7,622	6,644	7,326	9,113	12,574	15,256	16,767	18,671
20% Exceedance	18,203	17,366	14,826	10,641	5,329	4,269	5,448	7,007	9,407	12,251	15,296	17,718
30% Exceedance	17,580	16,592	13,669	9,102	3,286	2,080	4,003	6,140	8,531	11,720	14,939	17,259
40% Exceedance	17,071	15,940	12,676	5,703	1,939	1,566	2,786	4,306	8,010	10,461	13,155	16,106
50% Exceedance	15,816	13,737	10,998	4,358	1,121	1,070	1,718	2,858	6,684	9,415	11,884	14,910
60% Exceedance	8,326	11,705	8,508	2,721	691	475	1,027	2,035	5,571	7,720	10,841	9,247
70% Exceedance	8,143	11,355	5,001	734	275	313	739	1,149	3,112	6,981	10,224	9,000
80% Exceedance	8,017	10,283	2,306	299	213	213	327	477	1,383	5,376	9,881	8,821
90% Exceedance	7,496	7,172	1,192	198	196	190	213	284	596	4,242	9,309	8,397
Full Simulation Period Average ^a	13,221	13,253	9,330	5,306	2,674	2,173	2,943	4,043	6,354	9,139	12,244	13,376
Wet Water Years (32%)	12,102	11,259	4,855	1,149	298	299	574	987	2,209	4,916	8,711	8,074
Above Normal Years (9%)	12,378	12,841	8,970	2,548	648	572	937	1,748	3,843	6,578	10,096	8,514
Below Normal Years (20%)	12,613	13,279	10,986	5,675	2,226	1,304	1,988	3,127	6,579	9,301	12,105	15,237
Dry Water Years (21%)	13,183	13,751	11,030	8,209	4,117	3,140	4,434	5,714	8,369	11,807	14,887	17,227
Critical Water Years (18%)	16,352	16,396	13,644	10,281	6,727	6,144	7,478	9,689	12,377	14,637	16,667	18,674

Table 4L-7-23-1c. Suisun Bay near Ryer, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	2	22	151	-97	-23	-16	-7	64	1	6	1	42
20% Exceedance	71	47	-19	-83	-14	-95	-86	62	-21	163	42	21
30% Exceedance	72	-38	22	41	21	-86	-16	21	30	1	515	518
40% Exceedance	-9	41	-79	4	-137	-49	14	3	-137	145	-275	-21
50% Exceedance	289	-254	64	-24	-98	10	-13	7	-5	5	-45	204
60% Exceedance	-36	-36	-8	-64	-18	1	3	-19	-6	-100	431	62
70% Exceedance	24	7	-93	-1	-1	1	-2	0	-254	-27	369	104
80% Exceedance	28	-243	18	-12	0	1	1	1	-114	-244	508	91
90% Exceedance	-172	-8	4	0	0	0	0	4	-31	-72	680	134
Full Simulation Period Average ^a	49	-2	-23	-14	-57	-46	-9	14	-47	-3	189	192
Wet Water Years (32%)	81	-7	-82	-41	-4	4	2	1	-111	-40	285	259
Above Normal Years (9%)	-45	-4	110	49	-9	0	1	11	-104	26	510	70
Below Normal Years (20%)	87	0	-35	-23	-28	-37	-6	78	-9	-16	-57	215
Dry Water Years (21%)	-17	29	22	2	-69	-67	-24	11	15	55	296	281
Critical Water Years (18%)	72	-32	-24	-6	-195	-142	-18	-28	-18	-2	3	5

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-23a. Suisun Bay near Ryer, Long-Term Average EC

Figure 4L-7-23b. Suisun Bay near Ryer, Wet Year Average EC

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999). *These results are displayed with water year - year type sorting.

Figure 4L-7-23c. Suisun Bay near Ryer, Above Normal Year Average EC

Figure 4L-7-23d. Suisun Bay near Ryer, Below Normal Year Average EC

Figure 4L-7-23e. Suisun Bay near Ryer, Dry Year Average EC

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999). *These results are displayed with water year - year type sorting.

Figure 4L-7-23f. Suisun Bay near Ryer, Critical Year Average EC

Figure 4L-7-23g. Suisun Bay near Ryer, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-23h. Suisun Bay near Ryer, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-23i. Suisun Bay near Ryer, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-23j. Suisun Bay near Ryer, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-23k. Suisun Bay near Ryer, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-23I. Suisun Bay near Ryer, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-23m. Suisun Bay near Ryer, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-23n. Suisun Bay near Ryer, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-230. Suisun Bay near Ryer, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-23p. Suisun Bay near Ryer, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-23q. Suisun Bay near Ryer, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-23r. Suisun Bay near Ryer, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-24-1a. Goodyear Slough Outfall at Naval Fleet, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	16,302	15,550	14,071	11,590	8,004	6,794	7,639	8,503	11,759	14,928	16,824	16,663
20% Exceedance	15,813	14,784	13,488	10,342	6,726	4,521	5,511	7,472	9,204	11,671	14,408	15,350
30% Exceedance	15,178	14,206	13,004	9,428	5,551	3,662	3,741	6,436	8,069	9,755	12,410	14,033
40% Exceedance	14,607	13,551	12,283	8,582	4,325	2,721	3,023	4,592	7,048	8,810	9,866	13,230
50% Exceedance	14,085	12,743	10,848	6,799	3,443	1,830	2,208	3,297	5,514	8,360	9,265	12,652
60% Exceedance	9,984	11,498	9,468	4,940	1,698	1,501	1,748	2,247	4,599	7,341	8,762	11,575
70% Exceedance	9,780	11,026	7,647	2,507	1,255	1,030	1,253	1,749	2,790	6,063	8,148	11,190
80% Exceedance	9,528	10,234	6,739	1,526	905	835	1,053	1,036	1,605	3,747	7,678	10,274
90% Exceedance	8,974	8,495	5,261	904	727	733	790	754	842	2,489	6,191	8,866
Full Simulation Period Average ^a	12,505	12,203	9,993	6,385	3,791	2,789	3,228	4,207	5,910	8,201	10,354	12,485
Wet Water Years (32%)	11,752	10,812	6,987	2,650	1,133	889	1,025	1,357	2,166	4,435	7,731	9,850
Above Normal Years (9%)	11,978	11,811	9,891	5,345	2,041	1,423	1,572	2,077	3,531	5,030	6,386	9,033
Below Normal Years (20%)	12,031	12,069	11,007	7,154	3,652	2,460	2,502	3,449	5,463	7,621	8,405	12,824
Dry Water Years (21%)	12,595	12,780	11,209	8,613	5,743	3,876	4,582	6,051	7,941	10,526	12,603	14,062
Critical Water Years (18%)	14,527	14,351	12,842	10,092	7,271	5,947	7,201	9,028	11,885	14,415	16,545	16,677

Table 4L-7-24-1b. Goodyear Slough Outfall at Naval Fleet, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	16,218	15,552	14,081	11,732	8,501	6,290	7,586	8,483	11,760	14,922	16,812	16,684
20% Exceedance	15,266	14,737	13,345	10,659	6,495	4,451	5,398	7,452	9,180	11,674	14,274	15,205
30% Exceedance	14,621	14,102	12,985	9,387	5,578	3,458	3,694	6,414	8,060	10,267	12,632	14,146
40% Exceedance	14,242	13,368	12,141	8,455	4,244	2,627	3,020	4,593	7,122	9,218	10,432	13,042
50% Exceedance	13,310	12,367	10,933	6,640	3,173	1,807	2,174	3,299	5,496	8,547	9,696	12,177
60% Exceedance	9,985	11,544	9,553	4,911	1,669	1,464	1,701	2,240	4,740	7,557	9,307	11,554
70% Exceedance	9,815	10,631	7,890	2,929	1,245	1,038	1,275	1,729	2,657	5,751	9,069	11,382
80% Exceedance	9,545	9,698	6,138	1,546	921	844	1,040	1,040	1,545	3,794	8,190	11,028
90% Exceedance	7,166	8,355	5,154	909	729	743	800	751	823	2,548	7,227	9,030
Full Simulation Period Average ^a	12,083	12,036	9,990	6,385	3,769	2,747	3,215	4,225	5,910	8,333	10,835	12,523
Wet Water Years (32%)	11,358	10,682	7,007	2,707	1,160	895	1,035	1,359	2,116	4,328	7,848	10,167
Above Normal Years (9%)	11,566	11,630	9,928	5,252	1,924	1,388	1,562	2,087	3,489	5,395	7,632	9,038
Below Normal Years (20%)	11,685	11,874	11,045	7,153	3,638	2,420	2,482	3,485	5,498	8,150	9,536	12,227
Dry Water Years (21%)	12,159	12,668	11,172	8,495	5,594	3,754	4,529	6,042	7,954	10,657	13,101	14,318
Critical Water Years (18%)	13,985	14,087	12,773	10,176	7,346	5,906	7,199	9,094	11,940	14,416	16,548	16,685

Table 4L-7-24-1c. Goodyear Slough Outfall at Naval Fleet, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	-84	2	9	142	497	-503	-53	-20	2	-6	-11	21
20% Exceedance	-547	-47	-142	317	-232	-71	-113	-20	-24	3	-134	-145
30% Exceedance	-557	-104	-19	-41	27	-203	-47	-22	-10	511	222	113
40% Exceedance	-365	-183	-142	-127	-81	-94	-3	1	74	408	567	-188
50% Exceedance	-775	-376	85	-159	-270	-23	-34	2	-18	188	431	-475
60% Exceedance	1	46	85	-28	-29	-37	-47	-7	141	215	545	-21
70% Exceedance	35	-395	243	421	-10	8	22	-20	-133	-312	921	192
80% Exceedance	17	-535	-601	20	16	10	-13	4	-60	47	512	754
90% Exceedance	-1,808	-140	-107	5	2	10	10	-3	-19	59	1,036	165
Full Simulation Period Average ^a	-422	-168	-3	0	-22	-42	-13	19	0	132	481	38
Wet Water Years (32%)	-395	-130	20	56	27	6	10	2	-50	-107	117	317
Above Normal Years (9%)	-411	-180	37	-93	-117	-34	-10	10	-43	365	1,246	5
Below Normal Years (20%)	-346	-195	38	-1	-13	-40	-20	36	34	529	1,130	-597
Dry Water Years (21%)	-436	-112	-37	-118	-149	-122	-53	-9	13	131	498	257
Critical Water Years (18%)	-542	-264	-69	84	76	-41	-1	66	56	1	3	9

^a Based on the 100-year simulation period.

* All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-24c. Goodyear Slough Outfall at Naval Fleet, Above Normal Year Average EC

Figure 4L-7-24d. Goodyear Slough Outfall at Naval Fleet, Below Normal Year Average EC

Figure 4L-7-24f. Goodyear Slough Outfall at Naval Fleet, Critical Year Average EC

Figure 4L-7-24g. Goodyear Slough Outfall at Naval Fleet, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-24h. Goodyear Slough Outfall at Naval Fleet, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-24i. Goodyear Slough Outfall at Naval Fleet, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-24j. Goodyear Slough Outfall at Naval Fleet, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-24k. Goodyear Slough Outfall at Naval Fleet, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-24I. Goodyear Slough Outfall at Naval Fleet, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-24m. Goodyear Slough Outfall at Naval Fleet, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-24n. Goodyear Slough Outfall at Naval Fleet, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-240. Goodyear Slough Outfall at Naval Fleet, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-24p. Goodyear Slough Outfall at Naval Fleet, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-24q. Goodyear Slough Outfall at Naval Fleet, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-24r. Goodyear Slough Outfall at Naval Fleet, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-7-25-1a. Three Mile Slough, Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
10% Exceedance	2,171	1,879	1,350	795	352	266	293	428	864	1,130	1,441	1,884
20% Exceedance	1,764	1,655	1,090	593	259	224	250	274	404	625	1,245	1,660
30% Exceedance	1,590	1,448	932	467	245	209	230	257	364	531	1,007	1,412
40% Exceedance	1,414	1,205	780	334	222	204	214	228	341	417	766	1,262
50% Exceedance	1,161	993	607	281	207	199	208	212	284	352	616	1,029
60% Exceedance	297	594	446	243	198	196	201	203	243	273	427	354
70% Exceedance	272	535	332	198	190	190	195	193	200	243	378	321
80% Exceedance	262	449	263	190	187	186	190	186	187	219	346	300
90% Exceedance	250	282	219	183	182	183	182	177	177	201	290	275
Full Simulation Period Average ^a	1,056	1,027	700	395	247	221	233	272	380	471	745	968
Wet Water Years (32%)	875	750	384	215	186	185	187	184	198	218	320	284
Above Normal Years (9%)	992	921	543	249	198	194	200	198	223	241	361	304
Below Normal Years (20%)	935	979	815	390	225	201	214	219	312	357	630	1,053
Dry Water Years (21%)	1,040	1,048	799	496	276	227	236	252	353	556	1,036	1,442
Critical Water Years (18%)	1,566	1,604	1,098	676	367	311	347	547	889	1,062	1,479	1,869

Table 4L-7-25-1b. Three Mile Slough, Proposed Project ITP Spring Outflow 091224, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	2,160	1,857	1,288	778	377	263	293	433	864	1,121	1,435	1,900
20% Exceedance	1,806	1,632	1,093	590	264	222	251	276	407	654	1,271	1,679
30% Exceedance	1,609	1,443	937	454	242	211	230	258	365	538	1,088	1,430
40% Exceedance	1,454	1,212	756	339	222	205	213	228	342	419	732	1,274
50% Exceedance	1,232	973	617	274	207	200	208	212	284	343	588	1,007
60% Exceedance	310	599	445	242	198	196	201	202	237	276	466	368
70% Exceedance	282	541	328	197	190	190	195	193	199	243	405	332
80% Exceedance	268	451	263	190	187	186	190	186	187	218	377	316
90% Exceedance	254	304	219	183	182	182	182	177	177	201	338	290
Full Simulation Period Average ^a	1,072	1,028	696	394	244	219	232	272	380	473	764	986
Wet Water Years (32%)	897	747	372	212	186	185	186	184	197	217	341	300
Above Normal Years (9%)	996	922	550	252	199	194	200	197	223	246	400	311
Below Normal Years (20%)	953	982	812	388	225	202	214	221	315	359	602	1,057
Dry Water Years (21%)	1,043	1,052	799	492	270	225	236	252	358	564	1,111	1,493
Critical Water Years (18%)	1,588	1,602	1,096	679	361	306	345	543	882	1,061	1,473	1,872

Table 4L-7-25-1c. Three Mile Slough, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly EC (UMHOS/CM)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-11	-22	-62	-17	24	-3	-1	5	0	-9	-6	16
20% Exceedance	42	-23	3	-3	5	-2	1	2	3	29	25	20
30% Exceedance	19	-4	4	-13	-3	1	0	0	2	7	81	19
40% Exceedance	40	7	-24	5	0	0	-1	0	1	2	-33	11
50% Exceedance	71	-20	10	-7	0	0	0	0	0	-9	-29	-22
60% Exceedance	13	5	-1	-1	1	0	0	0	-6	2	39	14
70% Exceedance	10	5	-4	-1	0	0	0	0	-2	0	27	10
80% Exceedance	6	1	-1	0	0	0	0	0	0	-1	31	16
90% Exceedance	4	22	0	0	0	0	0	0	0	0	48	15
Full Simulation Period Average ^a	16	0	-4	-1	-2	-1	0	0	0	2	19	18
Wet Water Years (32%)	22	-3	-12	-2	0	0	0	0	-1	-1	22	16
Above Normal Years (9%)	4	1	7	3	1	0	0	0	-1	6	39	7
Below Normal Years (20%)	19	3	-3	-2	1	0	0	2	3	2	-28	4
Dry Water Years (21%)	2	3	0	-4	-7	-1	0	0	5	8	75	51
Critical Water Years (18%)	23	-1	-3	3	-6	-5	-2	-4	-7	-2	-7	4

^a Based on the 100-year simulation period.

 \ast All scenarios are simulated at current climate condition and 0 cm sea level rise.

* As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 \ast These results are displayed with water year - year type sorting.

Figure 4L-7-25a. Three Mile Slough, Long-Term Average EC

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999). *These results are displayed with water year - year type sorting.

Figure 4L-7-25b. Three Mile Slough, Wet Year Average EC

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999). *These results are displayed with water year - year type sorting.

Figure 4L-7-25c. Three Mile Slough, Above Normal Year Average EC

Figure 4L-7-25d. Three Mile Slough, Below Normal Year Average EC

Figure 4L-7-25e. Three Mile Slough, Dry Year Average EC

Figure 4L-7-25f. Three Mile Slough, Critical Year Average EC

Figure 4L-7-25g. Three Mile Slough, October EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-25h. Three Mile Slough, November EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-25i. Three Mile Slough, December EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-25j. Three Mile Slough, January EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-25k. Three Mile Slough, February EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-25I. Three Mile Slough, March EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-25m. Three Mile Slough, April EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-25n. Three Mile Slough, May EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-250. Three Mile Slough, June EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-25p. Three Mile Slough, July EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-25q. Three Mile Slough, August EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-7-25r. Three Mile Slough, September EC

*All scenarios are simulated at current climate condition and 0 cm sea level rise.