Appendix 4L

Attachment 3: Flow Results (CalSim 3)

Attachment 3: Flow Results (CalSim 3)

The following results of the CalSim 3 model are included for river flow conditions for the following scenarios:

- Baseline Conditions (082624)
- Proposed Project ITP Spring Outflow (091224)

	Model		
Title	Parameter	Table Numbers	Figure Numbers
Sacramento River Flow at Freeport	C_SAC048	4L-3-1-1a to 4L-3-1-1c	4L-3-1a to 4L-3-1r
Georgiana Slough Flow	C_SAC029B	4L-3-2-1a to 4L-3-2-1c	4L-3-2a to 4L-3-2r
Yolo Bypass Flow	C_YBP020	4L-3-3-1a to 4L-3-3-1c	4L-3-3a to 4L-3-3r
Sacramento River Flow at Rio Vista	C_SAC007	4L-3-4-1a to 4L-3-4-1c	4L-3-4a to 4L-3-4r
San Joaquin River at Vernalis	C_SJR070	4L-3-5-1a to 4L-3-5-1c	4L-3-5a to 4L-3-5r
San Joaquin River at Vernalis (60-20-20)	C_SJR070	4L-3-6-1a to 4L-3-6-1c	4L-3-6a to 4L-3-6f
Mokelumne River below Cosumnes	C_MOK019	4L-3-7-1a to 4L-3-7-1c	4L-3-7a to 4L-3-7r
Old and Middle River Flow	C_OMR014	4L-3-8-1a to 4L-3-8-1c	4L-3-8a to 4L-3-8r
Qwest	C_SJR013	4L-3-9-1a to 4L-3-9-1c	4L-3-9a to 4L-3-9r
Delta Outflow	NDOI	4L-3-10-1a to 4L-3-10-1c	4L-3-10a to 4L-3-10r

Report formats:

- Monthly tables comparing two scenarios (exceedance values, long-term average, and average by water year type).
- Monthly pattern charts (long-term average and average by water year type) including all scenarios.
- Monthly exceedance charts (all months) including all scenarios.

Table 4L-3-1-1a. Sacramento River Flow at Freeport, Baseline Conditions 082624, Monthly Flow (cfs)

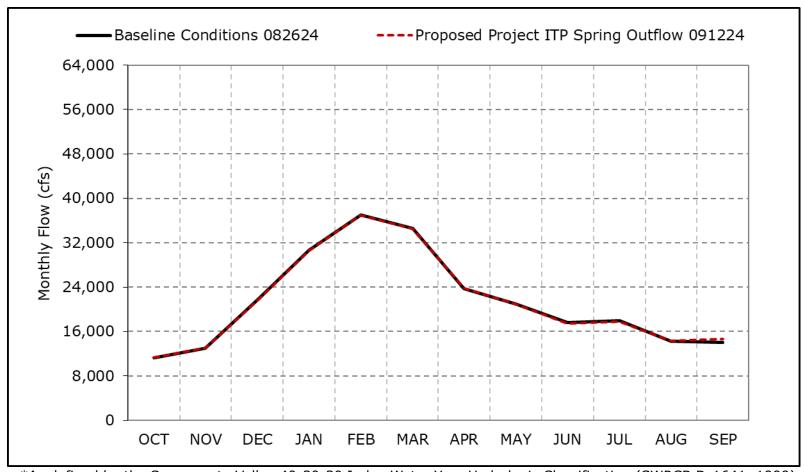
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	15,590	19,596	47,575	66,116	69,548	69,127	57,031	45,980	29,555	23,381	18,592	20,448
20% Exceedance	14,631	14,595	32,648	53,437	62,477	56,765	37,146	34,880	22,685	22,215	18,249	19,160
30% Exceedance	13,468	13,826	22,740	35,691	49,756	46,224	24,889	22,587	17,080	20,814	17,641	17,393
40% Exceedance	12,846	13,231	16,978	27,913	38,005	35,570	19,393	16,922	14,165	19,498	17,207	16,108
50% Exceedance	10,690	12,539	15,335	22,245	28,144	26,215	16,914	13,771	13,568	18,767	16,260	13,219
60% Exceedance	9,373	11,112	14,044	17,765	24,258	22,683	12,320	12,571	13,243	17,753	13,549	10,826
70% Exceedance	8,396	10,024	11,051	14,221	18,511	19,957	11,210	11,287	12,372	16,262	10,871	9,952
80% Exceedance	8,044	8,545	10,204	12,127	15,981	14,898	10,423	10,592	11,515	13,157	9,036	9,058
90% Exceedance	6,187	7,229	8,873	10,574	13,366	11,595	9,263	7,768	9,686	9,978	7,935	8,224
Full Simulation Period Average ^a	11,308	13,023	21,597	30,639	37,011	34,526	23,773	20,917	17,647	17,910	14,281	14,057
Wet Water Years (32%)	13,245	16,201	34,067	52,284	60,733	56,175	43,114	36,030	27,074	20,095	17,683	19,512
Above Normal Water Years (9%)	11,006	12,935	20,839	41,115	43,249	44,036	24,747	23,721	19,219	21,318	18,298	17,693
Below Normal Water Years (20%)	11,460	12,330	16,072	22,837	30,324	29,268	17,217	16,738	13,661	21,214	16,365	13,312
Dry Water Years (21%)	10,780	12,430	16,510	15,725	22,893	20,669	12,247	11,638	13,384	16,583	11,056	10,077
Critical Water Years (18%)	8,464	8,880	11,881	12,986	15,621	13,294	9,633	8,114	9,504	10,201	7,673	8,013

Table 4L-3-1-1b. Sacramento River Flow at Freeport, Proposed Project ITP Spring Outflow 091224, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	15,492	19,766	47,298	66,120	69,503	69,116	56,950	46,004	29,554	23,153	18,790	21,898
20% Exceedance	14,627	14,595	32,589	53,460	62,450	56,764	37,151	34,874	22,689	22,032	18,307	20,646
30% Exceedance	13,344	13,691	22,743	35,684	49,615	45,697	25,079	22,586	16,713	20,654	17,951	18,950
40% Exceedance	12,814	13,233	17,263	28,007	37,935	35,627	19,379	16,605	13,668	19,451	17,263	17,143
50% Exceedance	10,430	12,528	15,420	22,046	27,546	26,371	16,915	13,689	13,060	18,684	16,471	13,223
60% Exceedance	9,346	11,119	14,044	17,524	23,981	22,679	12,235	12,579	12,684	17,527	13,794	10,864
70% Exceedance	8,384	9,914	11,026	14,111	18,969	19,954	11,188	11,227	12,123	16,301	10,393	9,916
80% Exceedance	8,041	8,553	10,204	12,355	15,978	14,570	10,466	10,550	10,993	13,008	9,143	9,111
90% Exceedance	6,228	7,635	8,954	10,483	13,374	11,594	9,252	7,759	9,698	10,041	7,896	8,219
Full Simulation Period Average ^a	11,280	13,019	21,625	30,618	36,930	34,484	23,767	20,860	17,422	17,814	14,339	14,657
Wet Water Years (32%)	13,162	16,207	34,114	52,294	60,652	56,139	43,105	36,027	27,005	20,073	17,771	20,737
Above Normal Water Years (9%)	10,978	12,783	20,876	41,090	43,170	43,800	24,708	23,716	18,950	21,214	18,182	20,000
Below Normal Water Years (20%)	11,343	12,308	16,175	22,738	30,250	29,324	17,227	16,476	13,277	20,805	16,872	13,309
Dry Water Years (21%)	10,860	12,468	16,398	15,730	22,712	20,615	12,253	11,611	12,876	16,607	10,832	10,091
Critical Water Years (18%)	8,504	8,902	11,949	12,971	15,647	13,239	9,615	8,130	9,528	10,183	7,593	8,001

Table 4L-3-1-1c. Sacramento River Flow at Freeport, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-98	170	-277	4	-44	-11	-81	24	-1	-228	198	1,450
20% Exceedance	-4	0	-59	22	-27	-2	4	-6	5	-183	59	1,486
30% Exceedance	-124	-134	2	-7	-141	-526	189	0	-366	-160	310	1,558
40% Exceedance	-33	1	284	94	-70	57	-14	-317	-497	-48	55	1,034
50% Exceedance	-260	-11	86	-198	-598	156	1	-82	-509	-83	211	3
60% Exceedance	-28	7	0	-242	-277	-4	-85	7	-558	-226	245	39
70% Exceedance	-12	-110	-25	-111	458	-2	-22	-60	-249	39	-478	-36
80% Exceedance	-3	8	0	228	-2	-328	43	-42	-522	-149	108	53
90% Exceedance	41	405	81	-91	7	-1	-11	-9	12	63	-40	-6
Full Simulation Period Average ^a	-29	-4	28	-21	-81	-43	-6	-56	-225	-96	58	600
Wet Water Years (32%)	-84	6	47	10	-81	-36	-9	-3	-69	-22	88	1,225
Above Normal Water Years (9%)	-27	-152	37	-25	-79	-236	-39	-5	-269	-104	-116	2,307
Below Normal Water Years (20%)	-117	-22	103	-100	-74	56	10	-262	-384	-409	507	-3
Dry Water Years (21%)	80	37	-111	5	-181	-54	6	-27	-508	24	-223	14
Critical Water Years (18%)	40	22	68	-15	26	-55	-18	17	24	-19	-80	-12

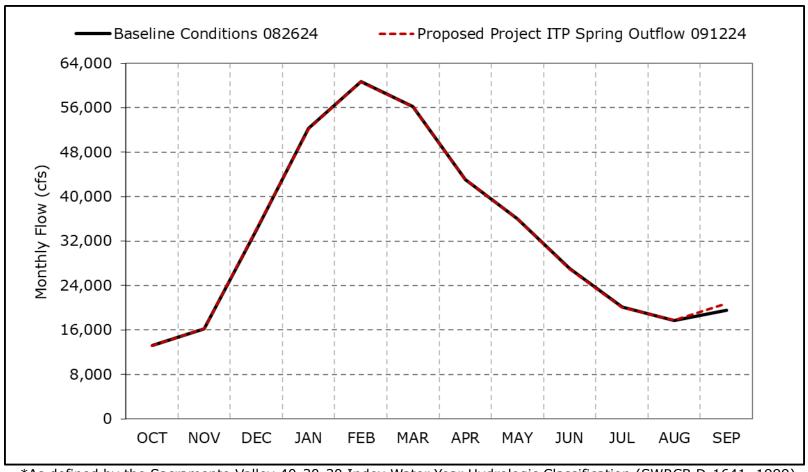

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

st Water Year Types results are displayed with water year - year type sorting.

Figure 4L-3-1a. Sacramento River Flow at Freeport, Long-Term Average Flow

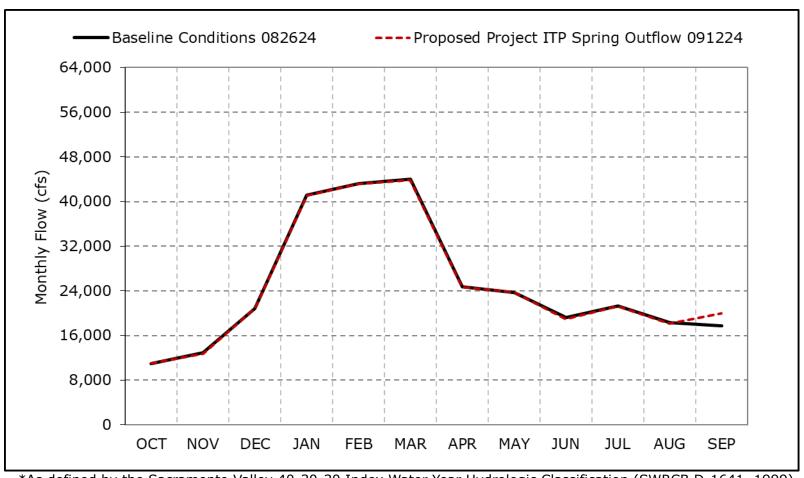


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1b. Sacramento River Flow at Freeport, Wet Year Average Flow

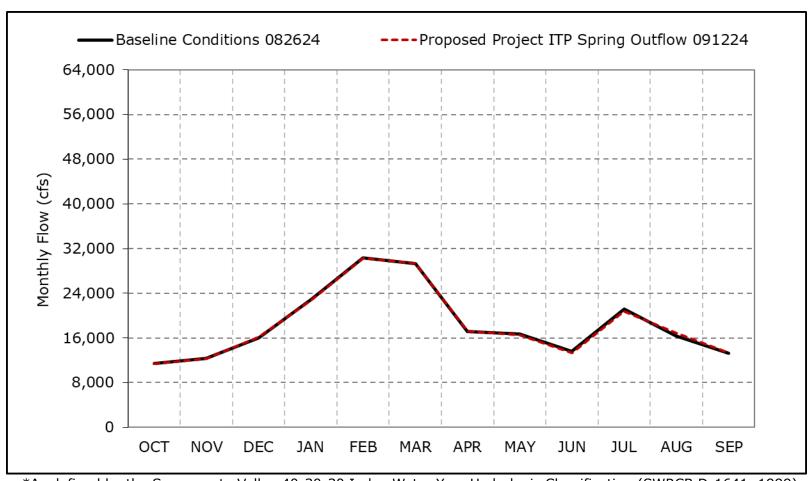


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1c. Sacramento River Flow at Freeport, Above Normal Year Average Flow

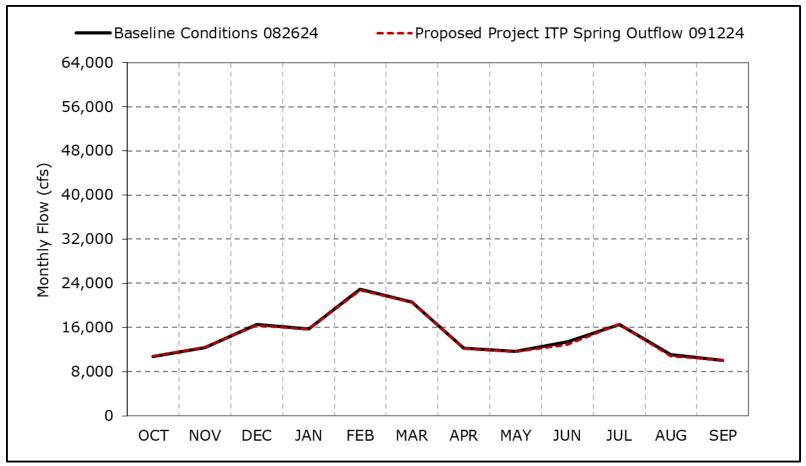


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1d. Sacramento River Flow at Freeport, Below Normal Year Average Flow

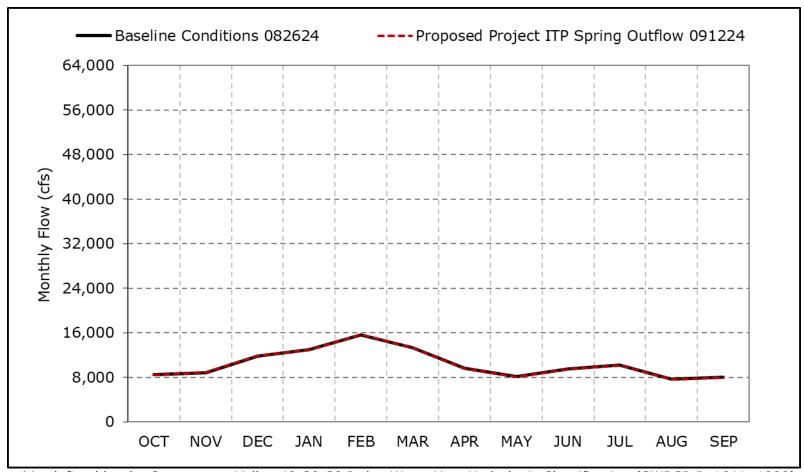


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1e. Sacramento River Flow at Freeport, Dry Year Average Flow

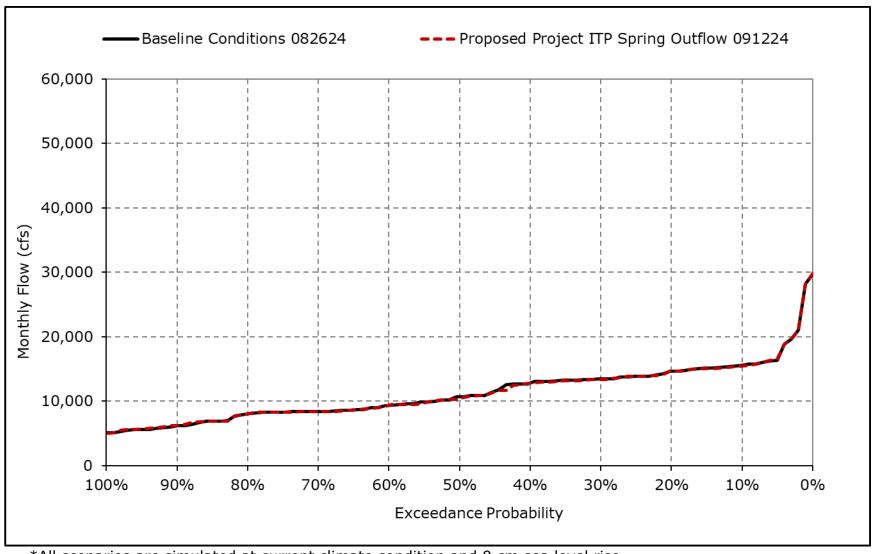


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1f. Sacramento River Flow at Freeport, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

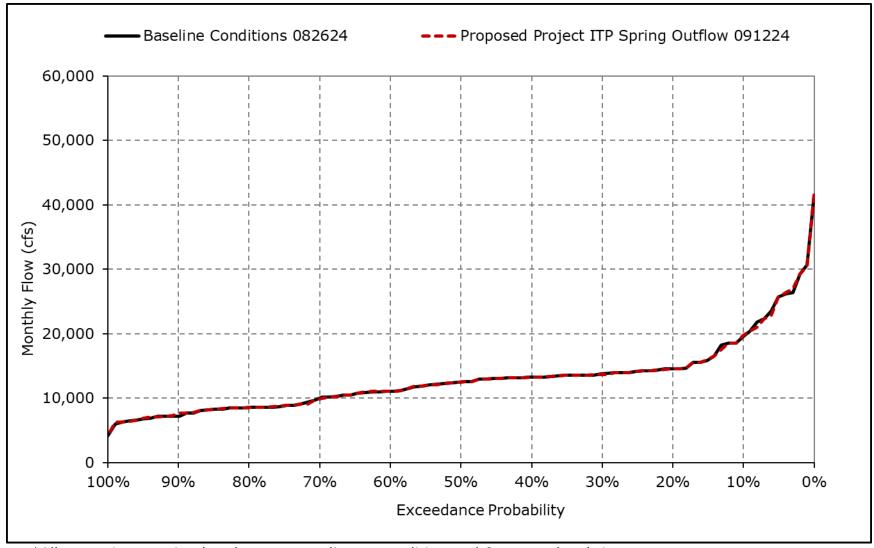

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1g. Sacramento River Flow at Freeport, October

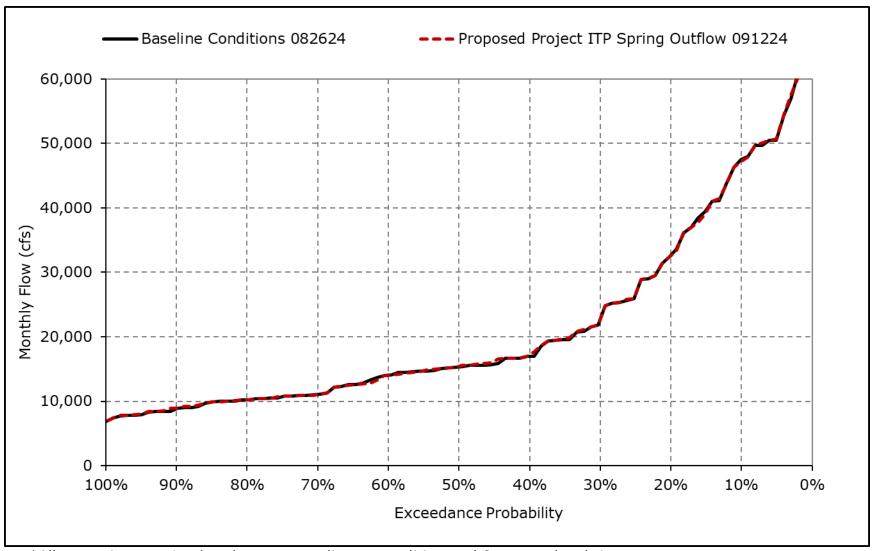

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1h. Sacramento River Flow at Freeport, November

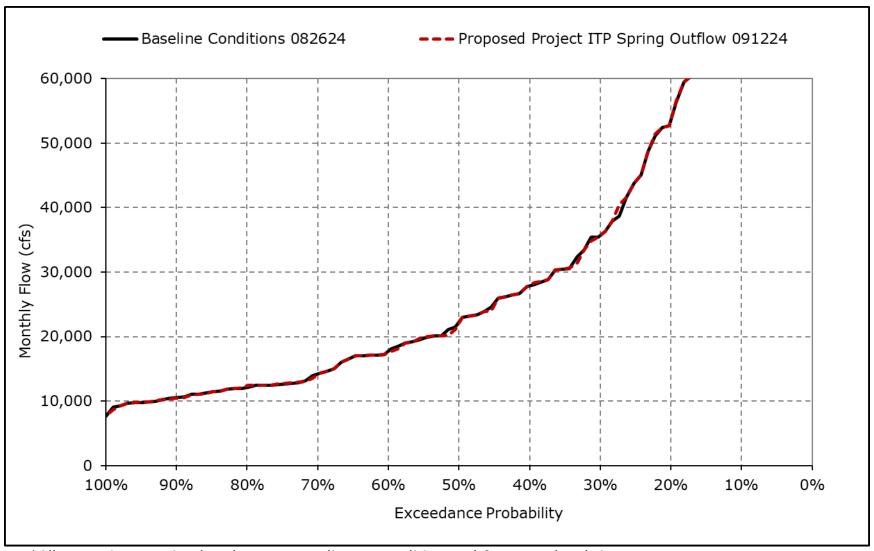

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1i. Sacramento River Flow at Freeport, December

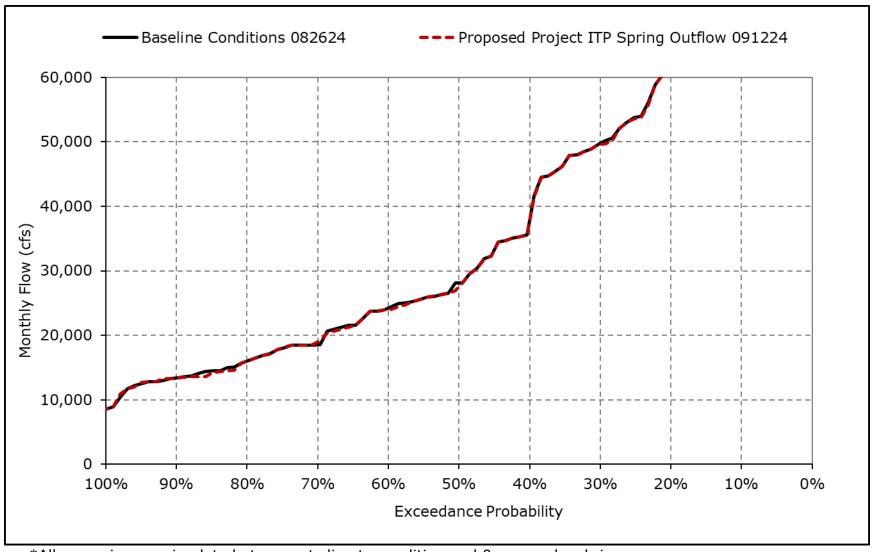

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1j. Sacramento River Flow at Freeport, January

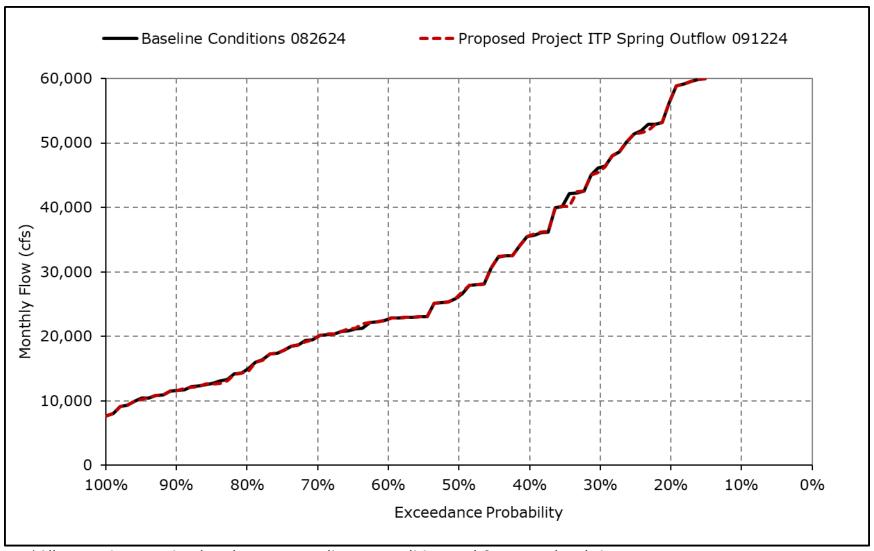

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1k. Sacramento River Flow at Freeport, February

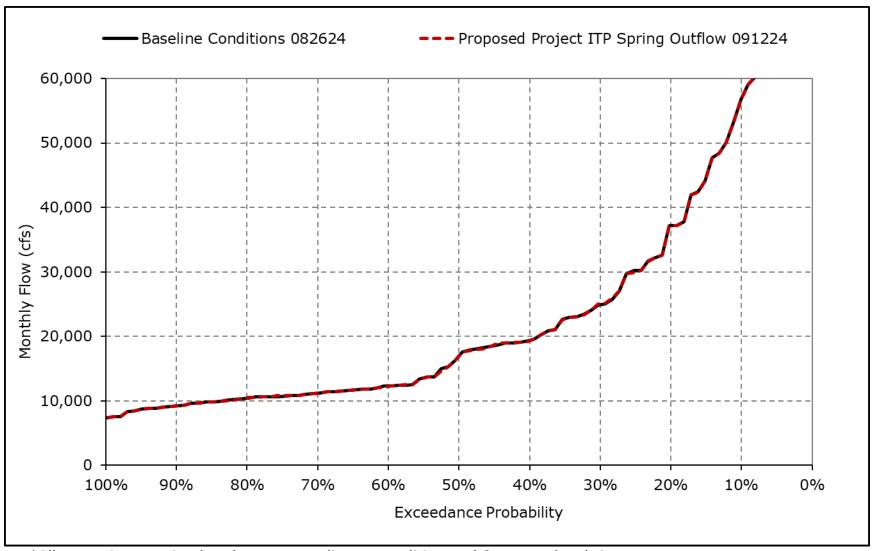

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-11. Sacramento River Flow at Freeport, March

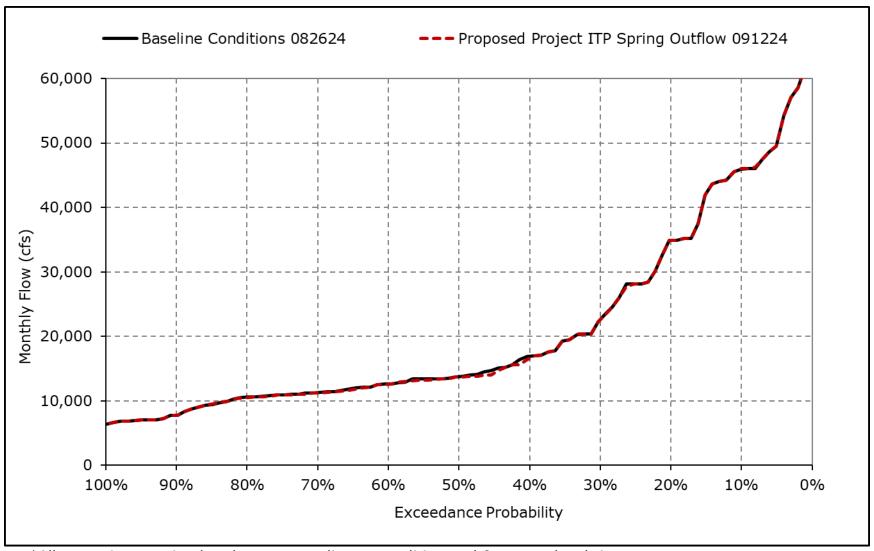

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1m. Sacramento River Flow at Freeport, April

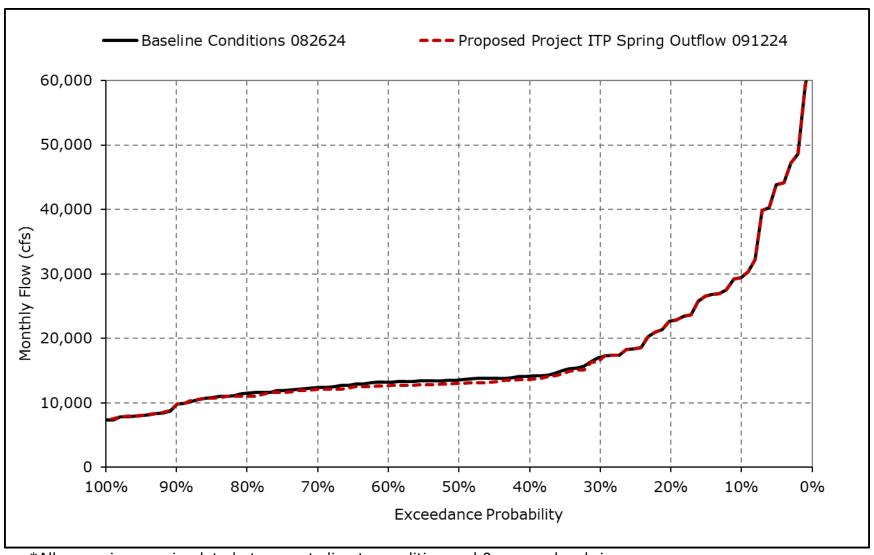

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1n. Sacramento River Flow at Freeport, May

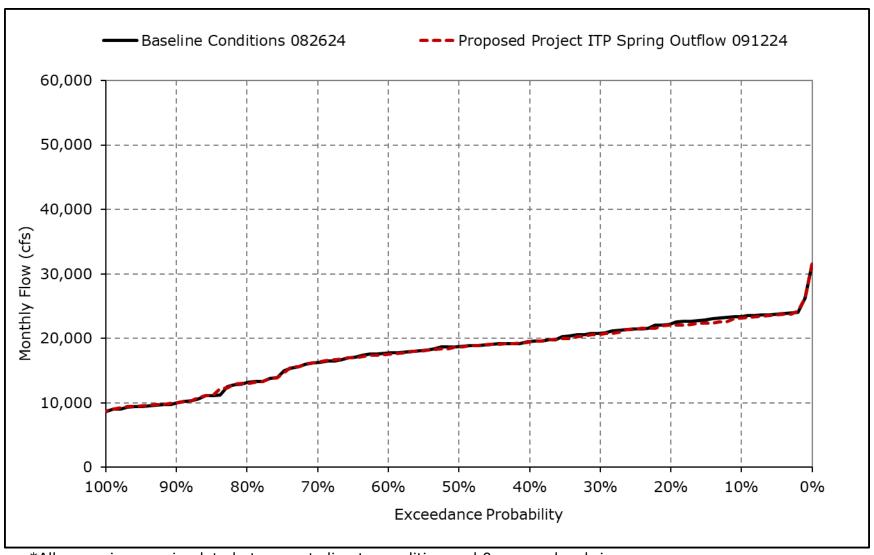

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1o. Sacramento River Flow at Freeport, June

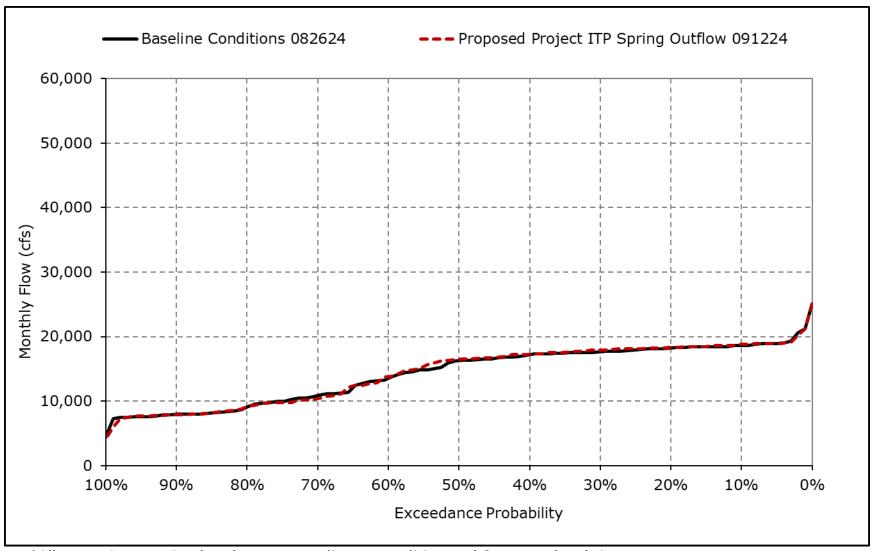

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1p. Sacramento River Flow at Freeport, July

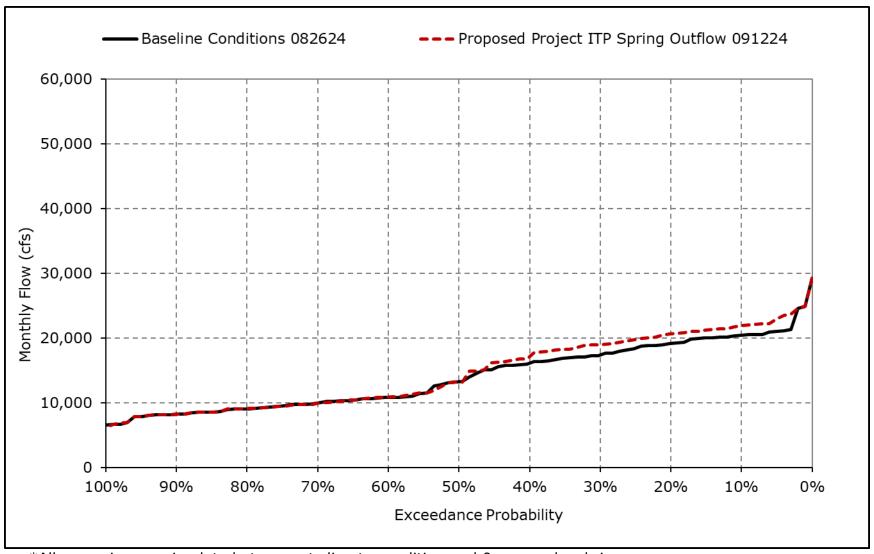

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1q. Sacramento River Flow at Freeport, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-1r. Sacramento River Flow at Freeport, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-3-2-1a. Georgiana Slough Flow, Baseline Conditions 082624, Monthly Flow (cfs)

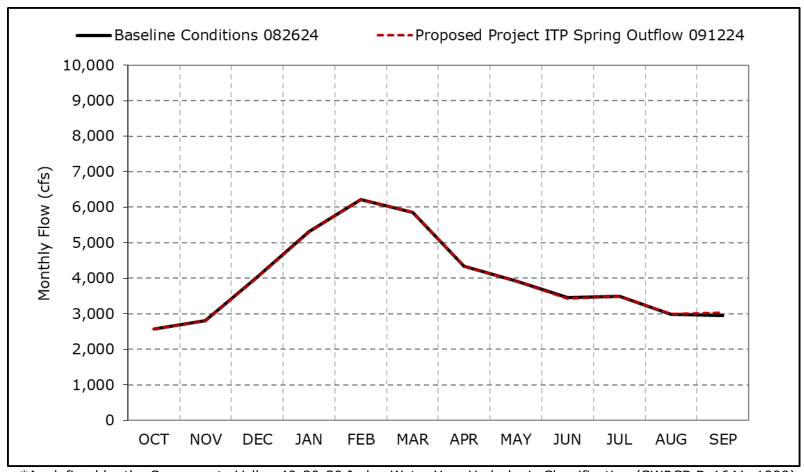
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,174	3,740	7,716	10,338	10,825	10,764	9,038	7,471	5,144	4,269	3,595	3,860
20% Exceedance	3,039	3,027	5,606	8,552	9,829	9,011	6,230	5,903	4,170	4,105	3,545	3,677
30% Exceedance	2,874	2,915	4,187	6,028	8,019	7,516	4,493	4,161	3,379	3,906	3,459	3,427
40% Exceedance	2,786	2,830	3,372	4,926	6,357	6,015	3,712	3,358	2,966	3,721	3,399	3,245
50% Exceedance	2,484	2,738	3,137	4,117	4,967	4,686	3,360	2,912	2,880	3,616	3,264	2,838
60% Exceedance	2,298	2,536	2,959	3,481	4,417	4,182	2,708	2,742	2,834	3,473	2,879	2,498
70% Exceedance	2,158	2,381	2,535	2,977	3,601	3,798	2,556	2,561	2,711	3,263	2,501	2,374
80% Exceedance	2,108	2,169	2,406	2,676	3,237	3,081	2,442	2,463	2,591	2,822	2,241	2,247
90% Exceedance	1,844	1,978	2,222	2,456	2,868	2,615	2,279	2,064	2,331	2,372	2,087	2,129
Full Simulation Period Average ^a	2,569	2,805	4,025	5,307	6,221	5,862	4,333	3,924	3,458	3,495	2,984	2,955
Wet Water Years (32%)	2,844	3,257	5,794	8,376	9,580	8,928	7,071	6,063	4,793	3,804	3,466	3,727
Above Normal Water Years (9%)	2,526	2,793	3,920	6,795	7,106	7,209	4,470	4,321	3,681	3,977	3,553	3,470
Below Normal Water Years (20%)	2,591	2,706	3,240	4,201	5,274	5,118	3,405	3,333	2,894	3,963	3,279	2,850
Dry Water Years (21%)	2,494	2,720	3,303	3,192	4,221	3,900	2,701	2,611	2,855	3,307	2,528	2,392
Critical Water Years (18%)	2,166	2,215	2,647	2,803	3,191	2,856	2,330	2,112	2,306	2,404	2,049	2,099

Table 4L-3-2-1b. Georgiana Slough Flow, Proposed Project ITP Spring Outflow 091224, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,162	3,764	7,677	10,339	10,819	10,763	9,027	7,474	5,144	4,237	3,621	4,065
20% Exceedance	3,038	3,027	5,598	8,555	9,825	9,010	6,230	5,901	4,171	4,077	3,554	3,887
30% Exceedance	2,857	2,898	4,187	6,030	8,001	7,442	4,520	4,161	3,326	3,884	3,503	3,647
40% Exceedance	2,781	2,831	3,414	4,939	6,347	6,023	3,710	3,312	2,894	3,714	3,406	3,391
50% Exceedance	2,446	2,736	3,146	4,089	4,882	4,708	3,360	2,901	2,808	3,605	3,294	2,839
60% Exceedance	2,291	2,537	2,959	3,442	4,374	4,181	2,696	2,743	2,756	3,441	2,916	2,503
70% Exceedance	2,154	2,359	2,535	2,961	3,662	3,798	2,553	2,554	2,676	3,268	2,434	2,369
80% Exceedance	2,107	2,169	2,406	2,709	3,237	3,034	2,448	2,456	2,517	2,802	2,256	2,255
90% Exceedance	1,850	2,041	2,234	2,453	2,868	2,615	2,278	2,063	2,333	2,381	2,079	2,128
Full Simulation Period Average ^a	2,565	2,804	4,029	5,304	6,209	5,856	4,332	3,916	3,426	3,482	2,992	3,040
Wet Water Years (32%)	2,832	3,258	5,800	8,377	9,569	8,923	7,070	6,062	4,783	3,801	3,478	3,900
Above Normal Water Years (9%)	2,522	2,771	3,925	6,791	7,094	7,175	4,465	4,320	3,643	3,962	3,537	3,796
Below Normal Water Years (20%)	2,574	2,702	3,255	4,187	5,264	5,126	3,406	3,296	2,840	3,905	3,351	2,849
Dry Water Years (21%)	2,505	2,725	3,288	3,192	4,195	3,893	2,702	2,607	2,783	3,311	2,496	2,394
Critical Water Years (18%)	2,172	2,218	2,657	2,800	3,194	2,848	2,327	2,115	2,310	2,402	2,038	2,098

Table 4L-3-2-1c. Georgiana Slough Flow, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-12	24	-39	2	-6	-2	-11	3	0	-32	26	205
20% Exceedance	-1	0	-8	3	-4	0	0	-2	1	-27	9	210
30% Exceedance	-16	-17	0	2	-19	-74	26	0	-53	-22	44	220
40% Exceedance	-5	0	42	13	-10	8	-2	-46	-71	-6	7	146
50% Exceedance	-38	-2	9	-28	-85	22	0	-11	-72	-10	30	0
60% Exceedance	-6	1	0	-38	-43	-1	-12	1	-78	-32	36	5
70% Exceedance	-4	-22	0	-16	60	0	-3	-7	-35	5	-67	-5
80% Exceedance	0	1	0	33	0	-46	6	-7	-74	-21	15	8
90% Exceedance	5	62	12	-3	0	0	-2	-1	2	9	-8	-1
Full Simulation Period Average ^a	-4	-1	4	-3	-11	-6	-1	-8	-32	-14	8	85
Wet Water Years (32%)	-12	1	7	1	-11	-5	-1	0	-10	-3	12	173
Above Normal Water Years (9%)	-4	-21	5	-4	-11	-33	-6	-1	-38	-15	-16	326
Below Normal Water Years (20%)	-17	-3	15	-14	-10	8	1	-37	-54	-58	72	0
Dry Water Years (21%)	11	5	-16	1	-26	-8	1	-4	-72	3	-32	2
Critical Water Years (18%)	6	3	10	-2	4	-8	-3	2	3	-3	-11	-2

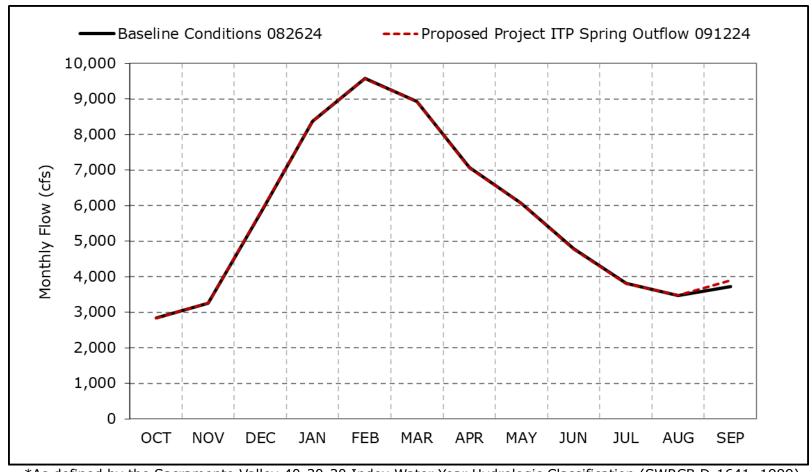

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 $[\]ensuremath{^{*}}$ Water Year Types results are displayed with water year - year type sorting.

Figure 4L-3-2a. Georgiana Slough Flow, Long-Term Average Flow

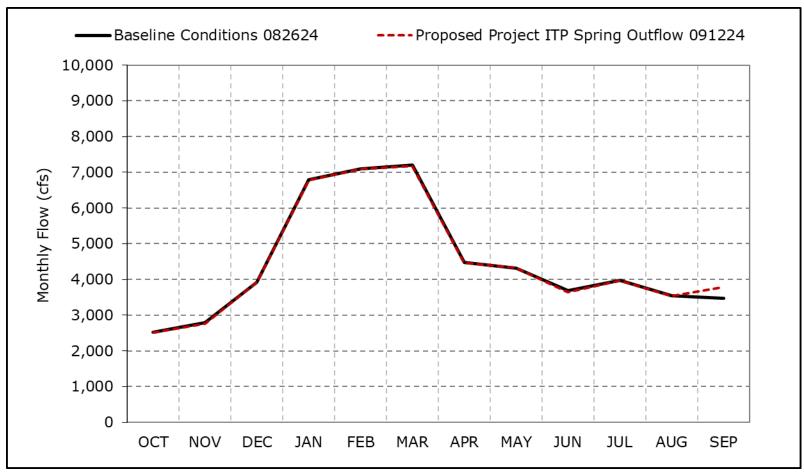


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2b. Georgiana Slough Flow, Wet Year Average Flow

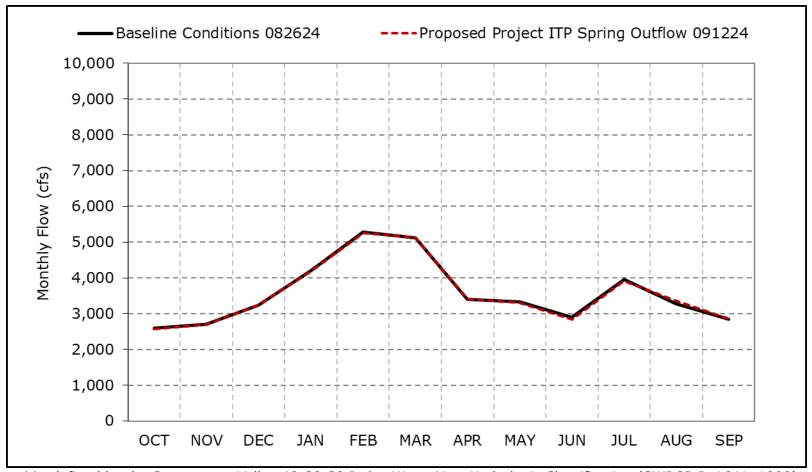


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2c. Georgiana Slough Flow, Above Normal Year Average Flow

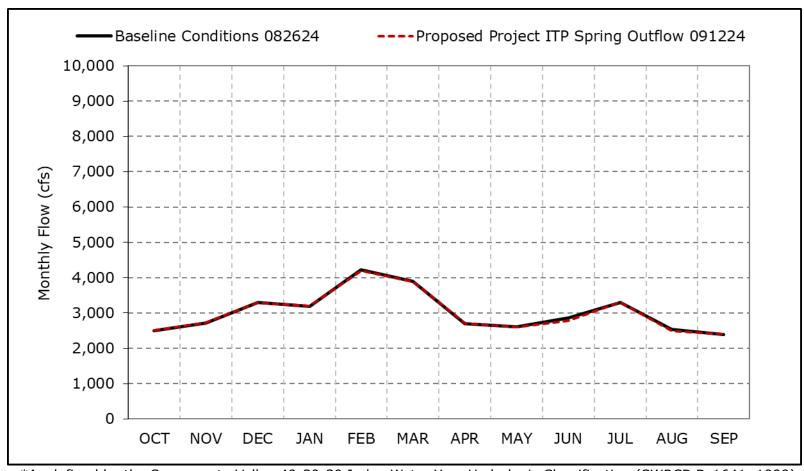


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2d. Georgiana Slough Flow, Below Normal Year Average Flow

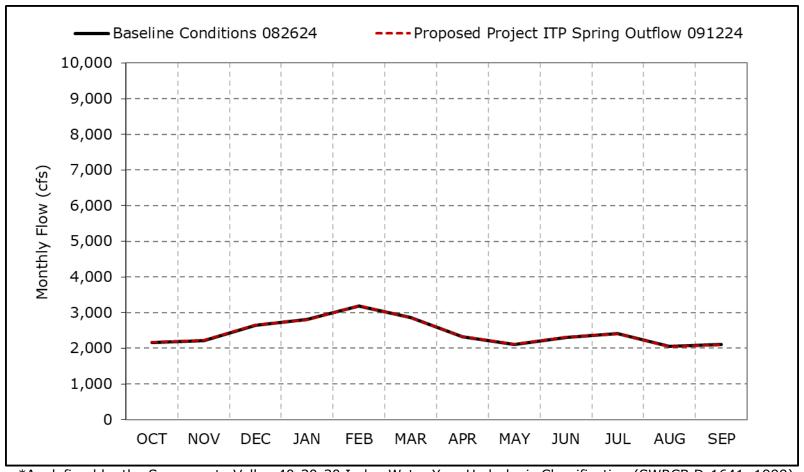


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2e. Georgiana Slough Flow, Dry Year Average Flow

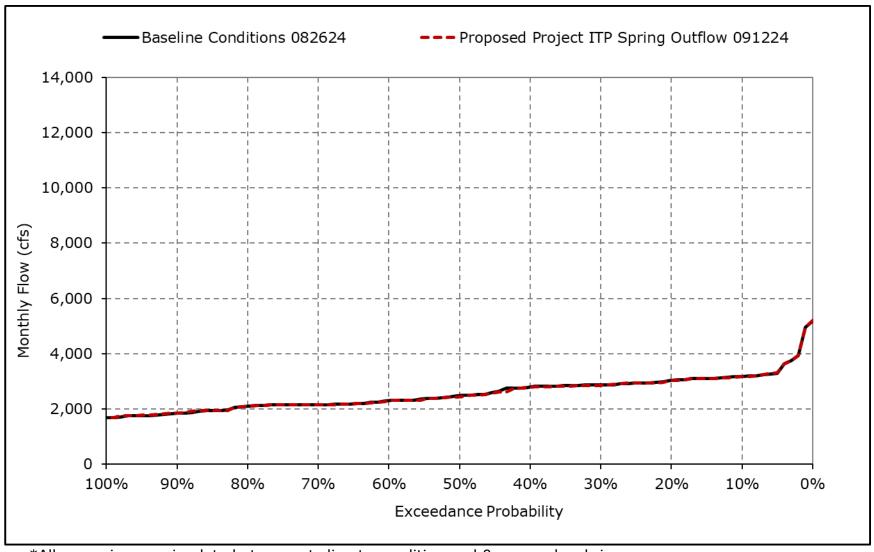


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2f. Georgiana Slough Flow, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

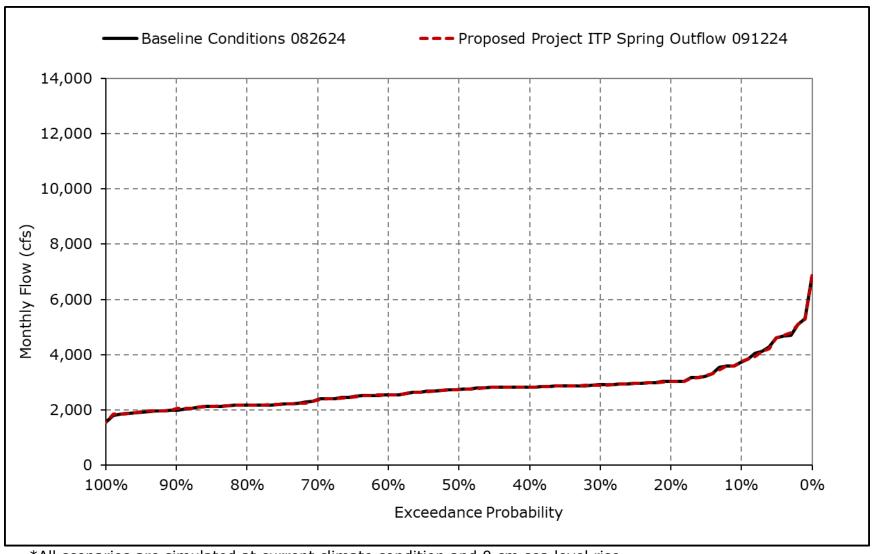

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2g. Georgiana Slough Flow, October

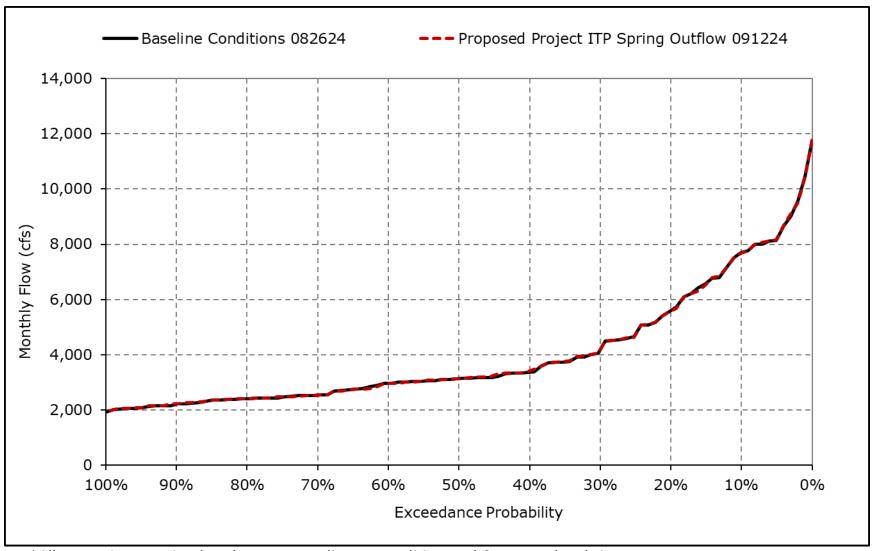

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2h. Georgiana Slough Flow, November

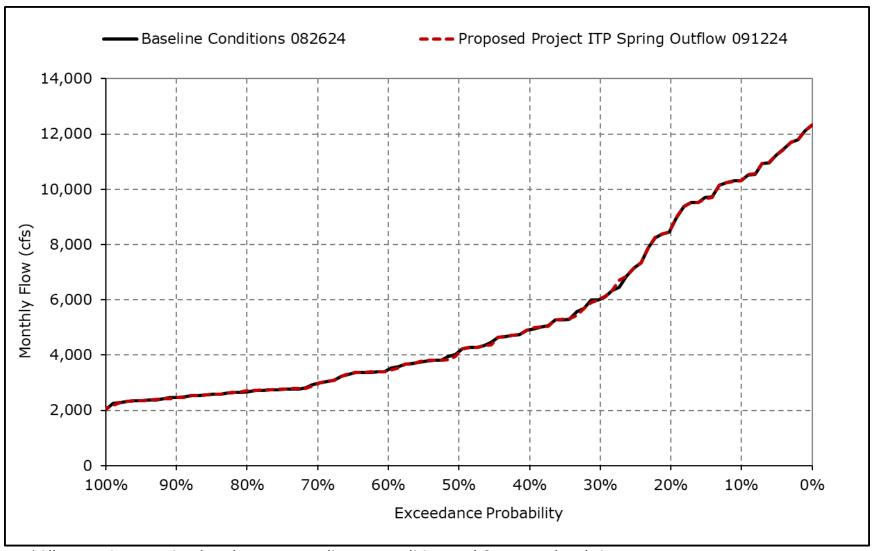

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2i. Georgiana Slough Flow, December

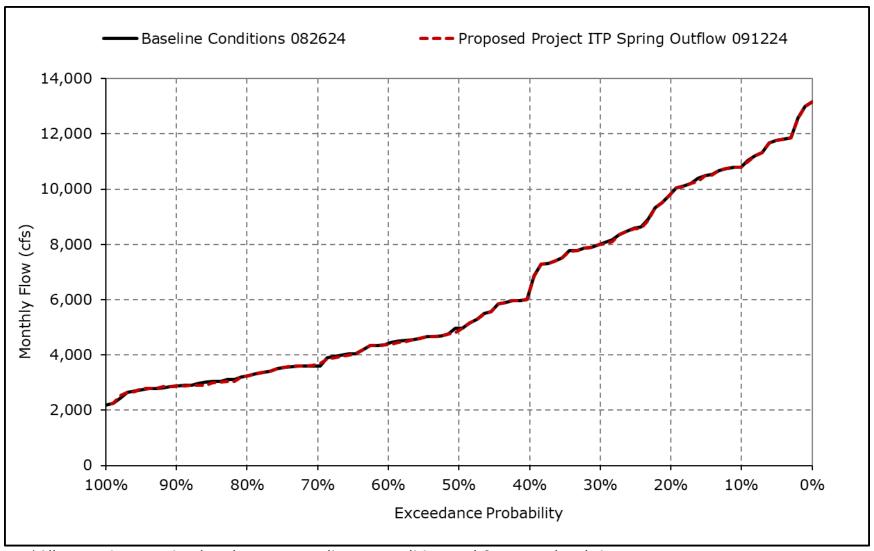

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2j. Georgiana Slough Flow, January

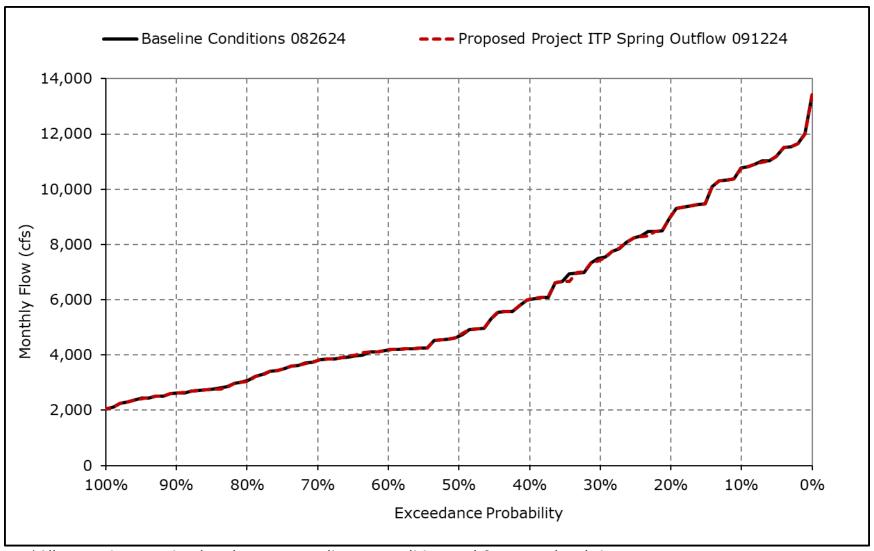

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2k. Georgiana Slough Flow, February

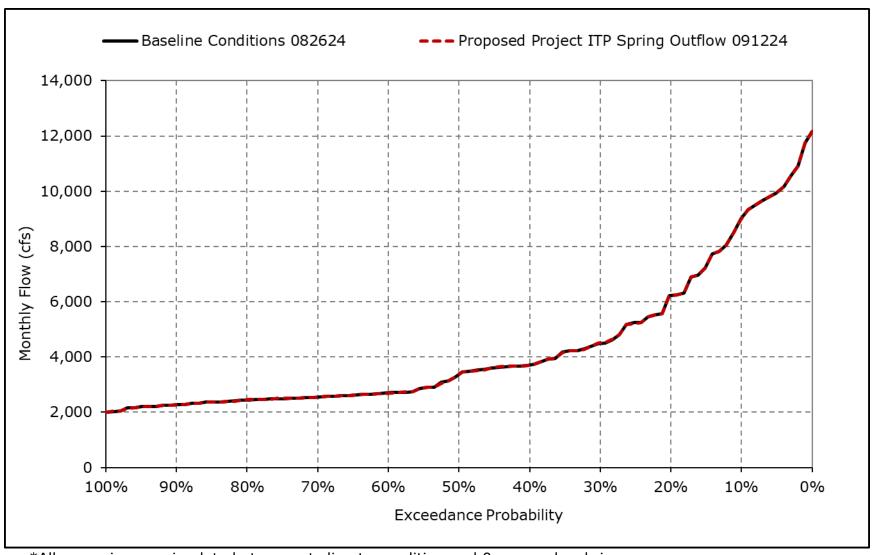

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2l. Georgiana Slough Flow, March

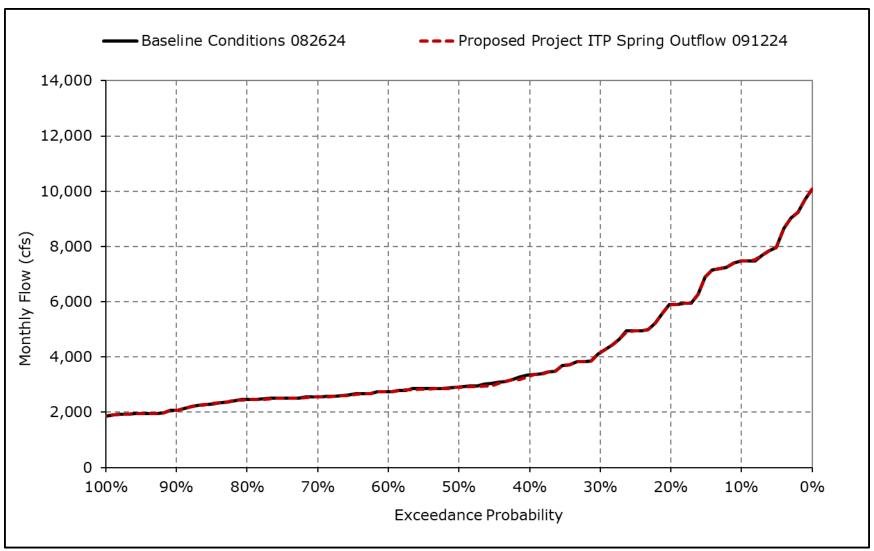

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2m. Georgiana Slough Flow, April

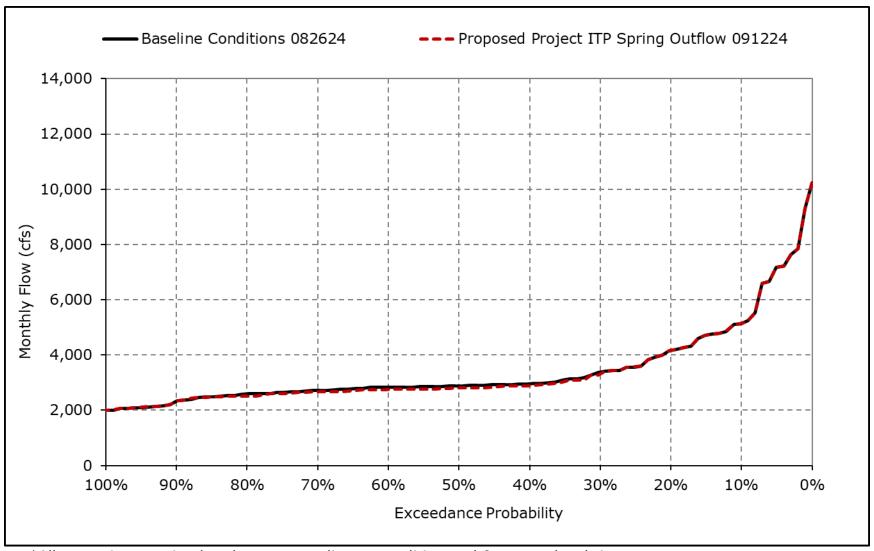

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2n. Georgiana Slough Flow, May

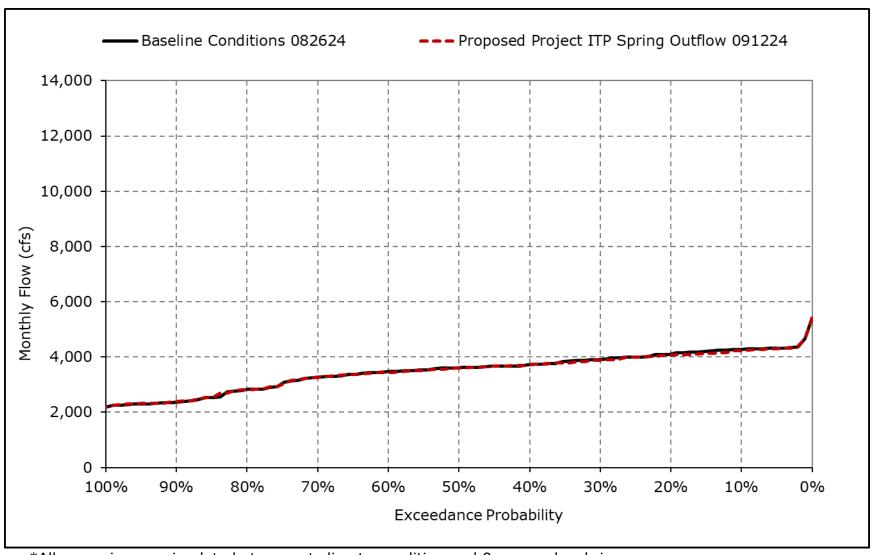

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2o. Georgiana Slough Flow, June

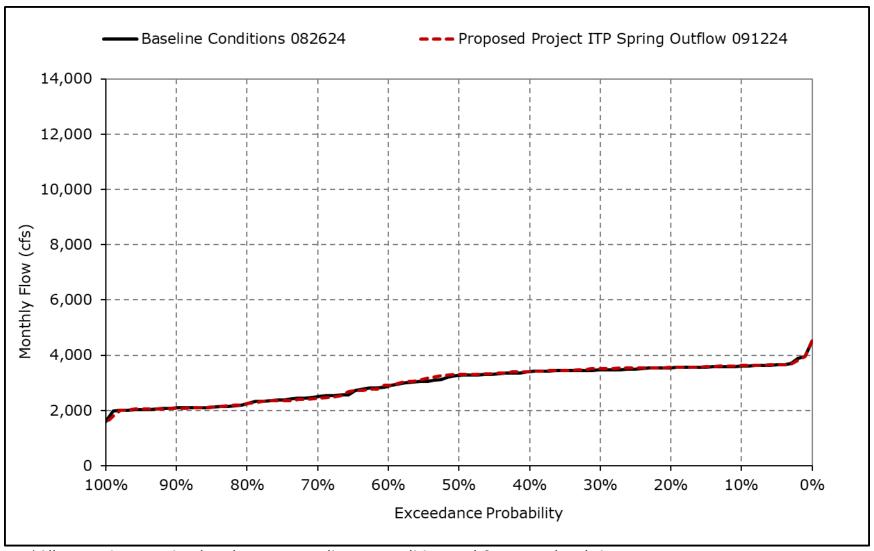

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2p. Georgiana Slough Flow, July

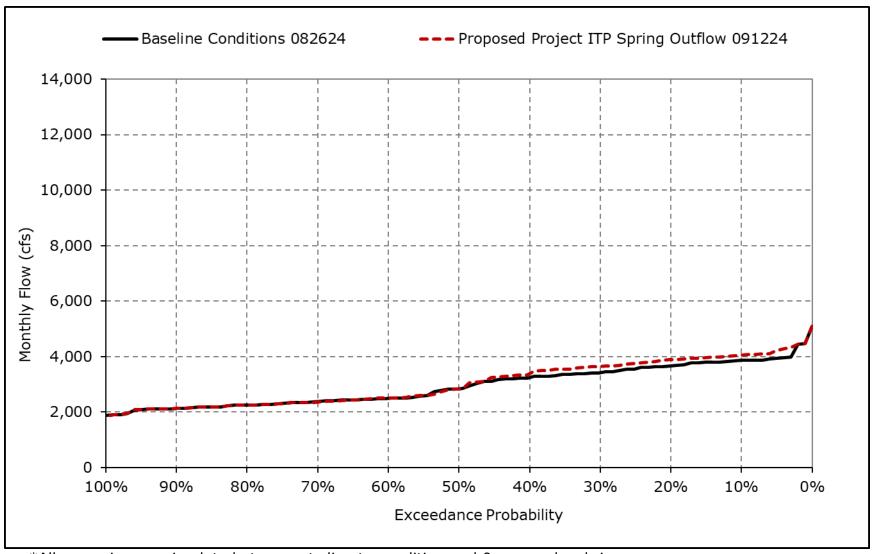

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2q. Georgiana Slough Flow, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-2r. Georgiana Slough Flow, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-3-3-1a. Yolo Bypass Flow, Baseline Conditions 082624, Monthly Flow (cfs)

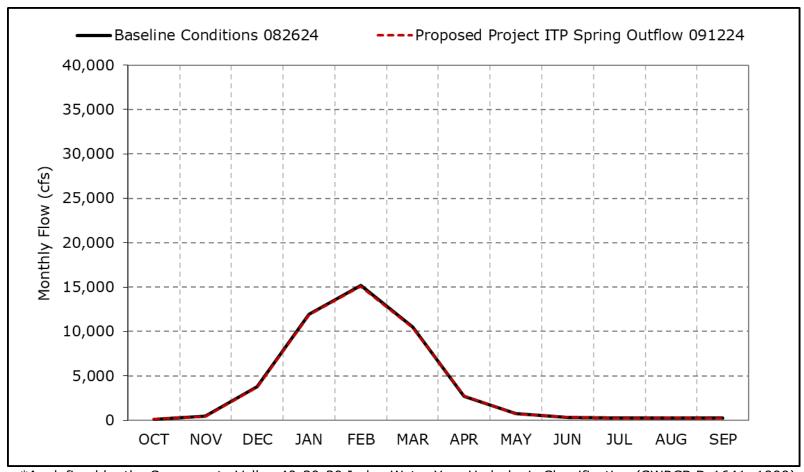
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	184	832	11,149	40,630	49,303	36,013	3,604	1,523	542	325	276	309
20% Exceedance	123	372	6,523	13,858	17,563	9,299	1,728	769	380	259	202	279
30% Exceedance	112	256	1,656	5,514	10,585	5,574	860	533	306	251	192	265
40% Exceedance	90	172	843	2,846	6,462	2,811	606	394	244	247	188	254
50% Exceedance	79	139	451	1,466	3,062	1,617	335	292	235	243	183	243
60% Exceedance	67	124	275	784	1,927	879	294	261	226	235	179	234
70% Exceedance	54	102	168	383	735	478	271	245	221	233	175	217
80% Exceedance	49	83	109	222	349	287	242	223	210	224	170	210
90% Exceedance	44	74	88	127	190	105	220	201	202	207	159	184
Full Simulation Period Average ^a	130	452	3,775	11,914	15,183	10,535	2,727	733	354	254	242	249
Wet Water Years (32%)	211	911	8,982	31,397	38,609	28,315	7,523	1,454	615	313	239	292
Above Normal Water Years (9%)	79	341	2,790	13,051	11,372	8,517	956	655	277	240	177	245
Below Normal Water Years (20%)	118	195	1,346	2,098	5,776	2,234	595	546	242	204	174	232
Dry Water Years (21%)	97	317	1,206	776	2,333	968	338	297	225	243	181	236
Critical Water Years (18%)	64	135	703	608	888	322	242	208	201	225	426	210

Table 4L-3-3-1b. Yolo Bypass Flow, Proposed Project ITP Spring Outflow 091224, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	185	832	11,217	40,608	48,356	36,011	3,606	1,609	543	325	274	307
20% Exceedance	124	373	6,530	13,987	17,566	9,301	1,728	875	380	259	202	279
30% Exceedance	111	256	1,656	5,514	10,584	5,567	861	536	313	251	192	265
40% Exceedance	91	176	847	2,844	6,459	2,898	605	405	245	247	188	254
50% Exceedance	79	138	451	1,465	3,025	1,619	332	302	235	243	183	243
60% Exceedance	67	124	275	784	1,914	879	294	263	226	235	180	234
70% Exceedance	55	102	165	377	734	478	271	245	221	233	176	220
80% Exceedance	49	86	110	222	348	294	242	227	209	224	171	209
90% Exceedance	43	74	88	127	188	105	220	201	202	207	162	187
Full Simulation Period Average ^a	131	440	3,760	11,904	15,108	10,485	2,719	748	354	254	261	250
Wet Water Years (32%)	212	909	8,941	31,372	38,468	28,223	7,500	1,452	614	312	239	289
Above Normal Water Years (9%)	79	349	2,762	13,048	11,203	8,372	955	656	277	240	177	235
Below Normal Water Years (20%)	119	194	1,359	2,093	5,712	2,232	595	620	247	204	181	234
Dry Water Years (21%)	97	260	1,199	775	2,320	933	338	298	225	243	182	240
Critical Water Years (18%)	64	136	704	608	888	322	241	208	201	225	522	214

Table 4L-3-3-1c. Yolo Bypass Flow, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	2	0	68	-22	-948	-1	1	85	0	0	-2	-2
20% Exceedance	0	0	7	129	3	3	0	105	1	0	0	0
30% Exceedance	-1	0	0	0	0	-7	0	4	7	0	0	1
40% Exceedance	1	4	5	-2	-3	87	-1	11	1	0	0	0
50% Exceedance	0	-1	0	-1	-37	2	-4	10	0	0	1	0
60% Exceedance	0	0	0	0	-13	-1	0	2	0	0	1	0
70% Exceedance	1	0	-3	-6	0	0	0	0	0	0	1	2
80% Exceedance	0	3	0	0	-1	7	0	4	0	0	1	-1
90% Exceedance	-2	0	0	0	-2	0	0	0	0	0	2	3
Full Simulation Period Average ^a	0	-12	-14	-10	-76	-50	-8	14	1	0	19	0
Wet Water Years (32%)	1	-2	-41	-25	-140	-92	-23	-2	-1	0	0	-2
Above Normal Water Years (9%)	0	8	-28	-3	-170	-145	-1	0	0	0	0	-10
Below Normal Water Years (20%)	0	-1	13	-5	-64	-2	0	74	5	0	7	2
Dry Water Years (21%)	0	-57	-7	-1	-13	-35	0	1	0	0	0	4
Critical Water Years (18%)	0	1	1	0	0	0	0	0	0	0	96	4

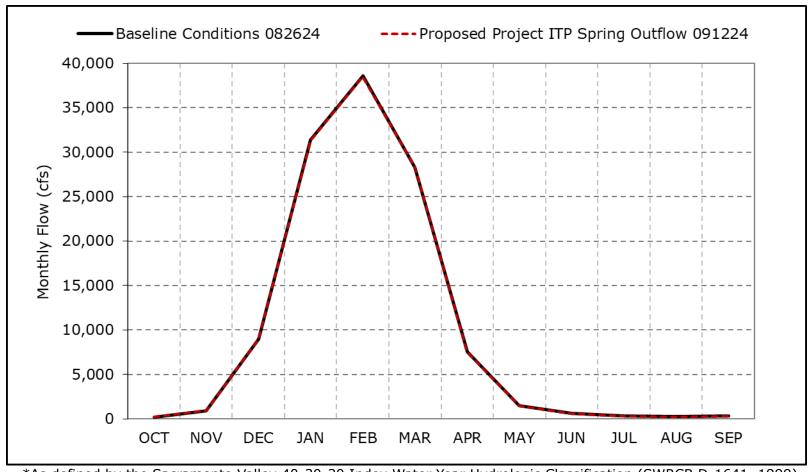

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 $[\]ensuremath{^{*}}$ Water Year Types results are displayed with water year - year type sorting.

Figure 4L-3-3a. Yolo Bypass Flow, Long-Term Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3b. Yolo Bypass Flow, Wet Year Average Flow

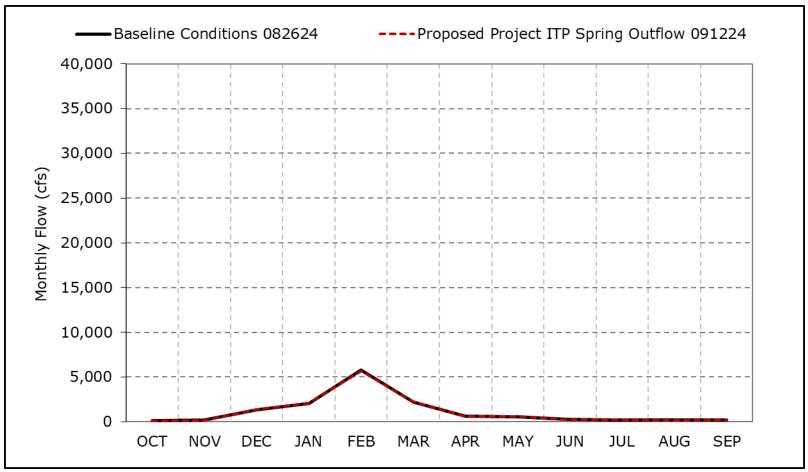


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3c. Yolo Bypass Flow, Above Normal Year Average Flow

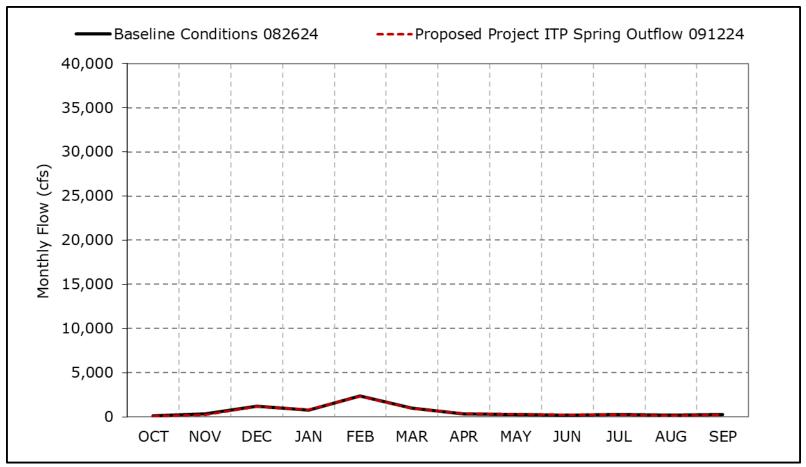


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3d. Yolo Bypass Flow, Below Normal Year Average Flow

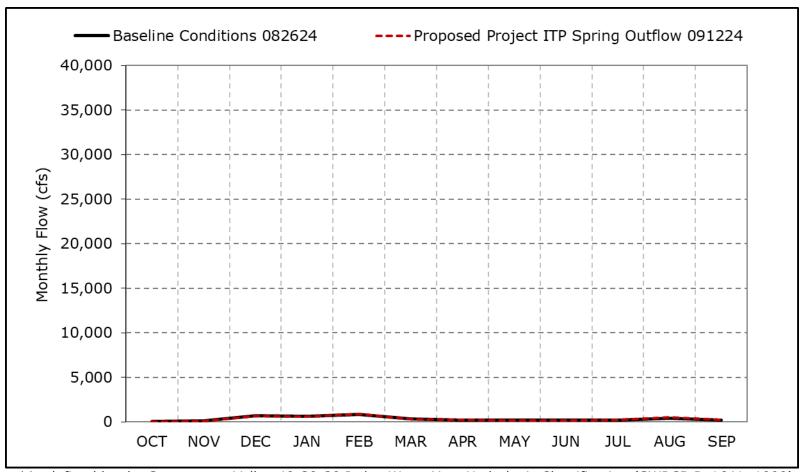


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3e. Yolo Bypass Flow, Dry Year Average Flow

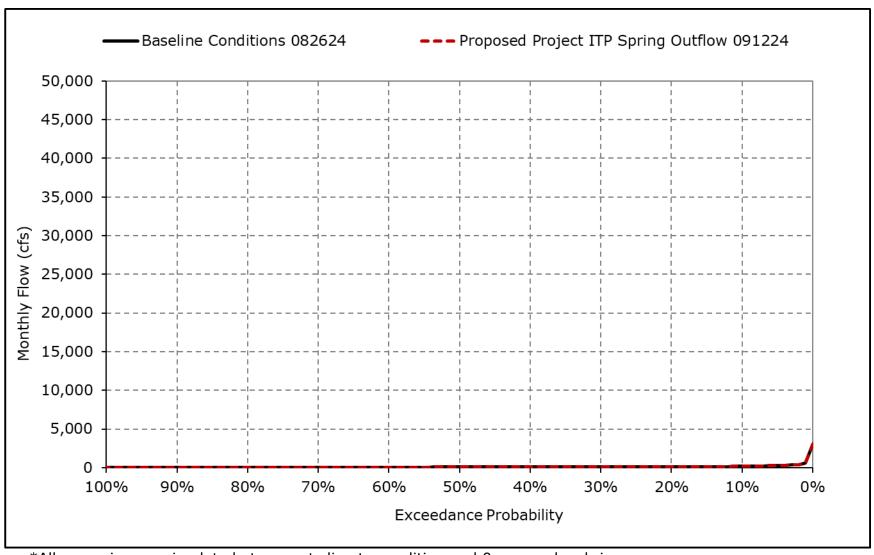


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3f. Yolo Bypass Flow, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

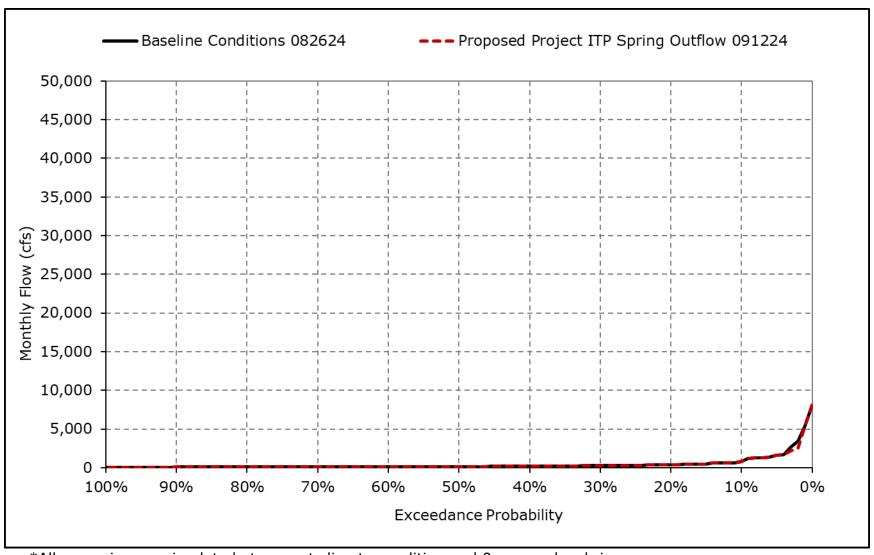

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3g. Yolo Bypass Flow, October

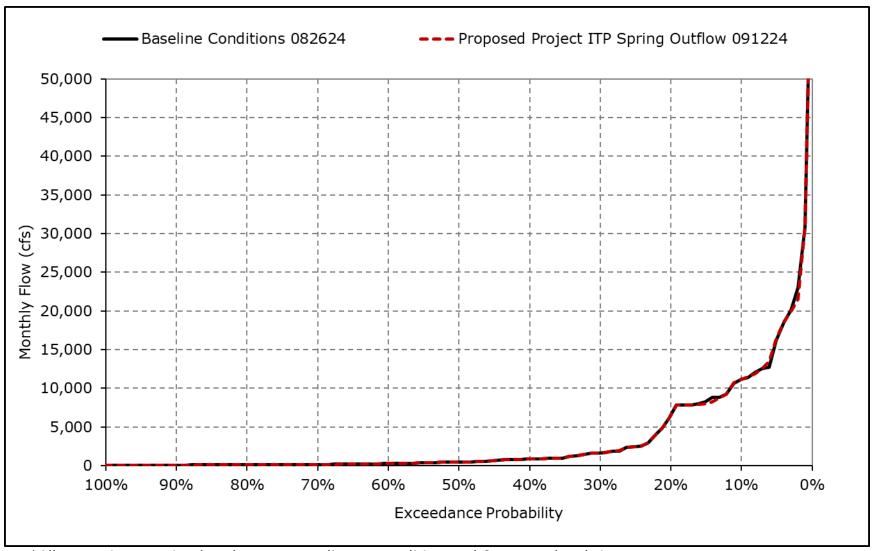

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3h. Yolo Bypass Flow, November

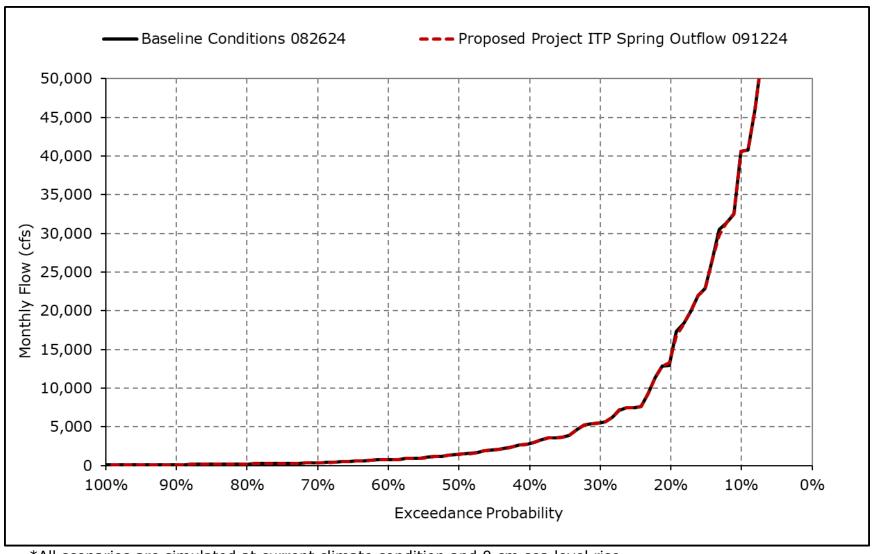

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3i. Yolo Bypass Flow, December

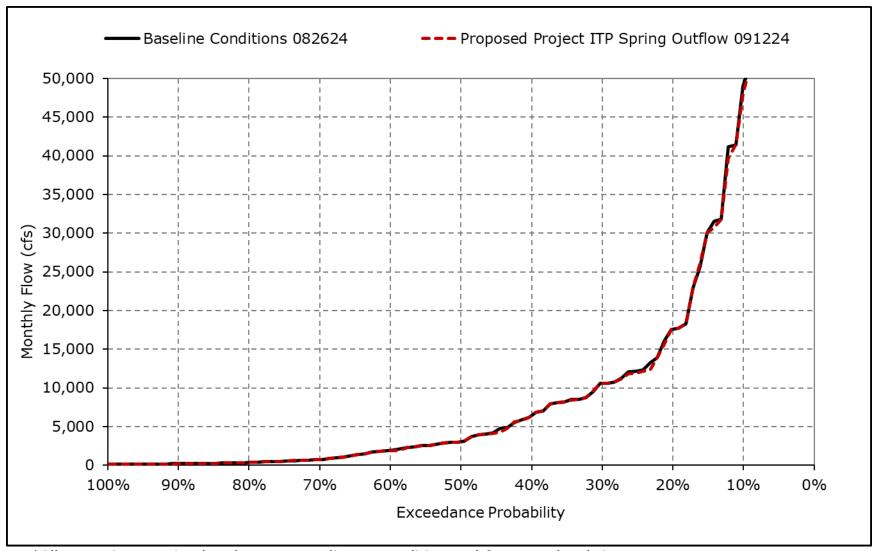

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3j. Yolo Bypass Flow, January

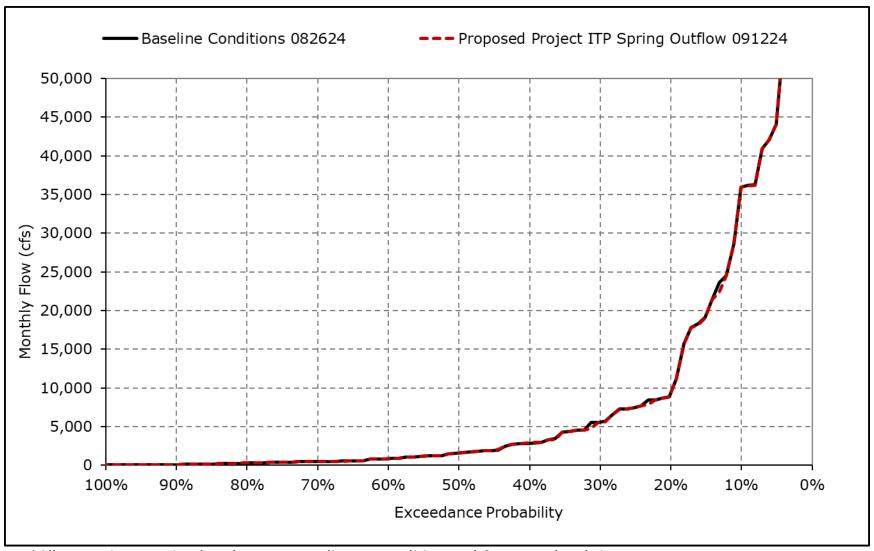

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3k. Yolo Bypass Flow, February

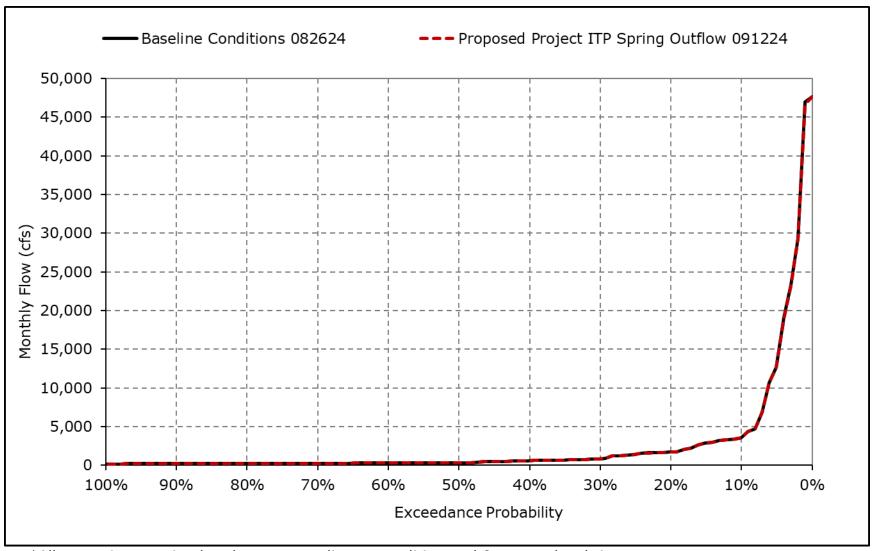

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3I. Yolo Bypass Flow, March

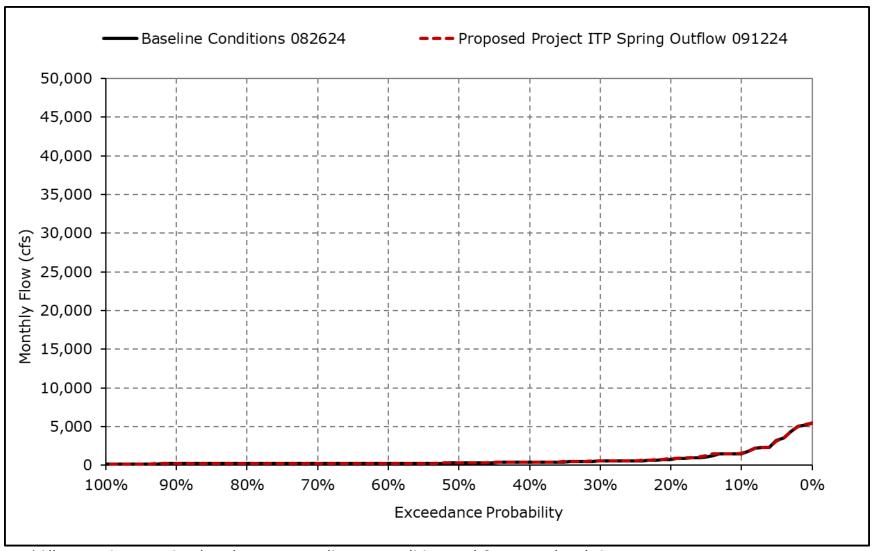

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3m. Yolo Bypass Flow, April

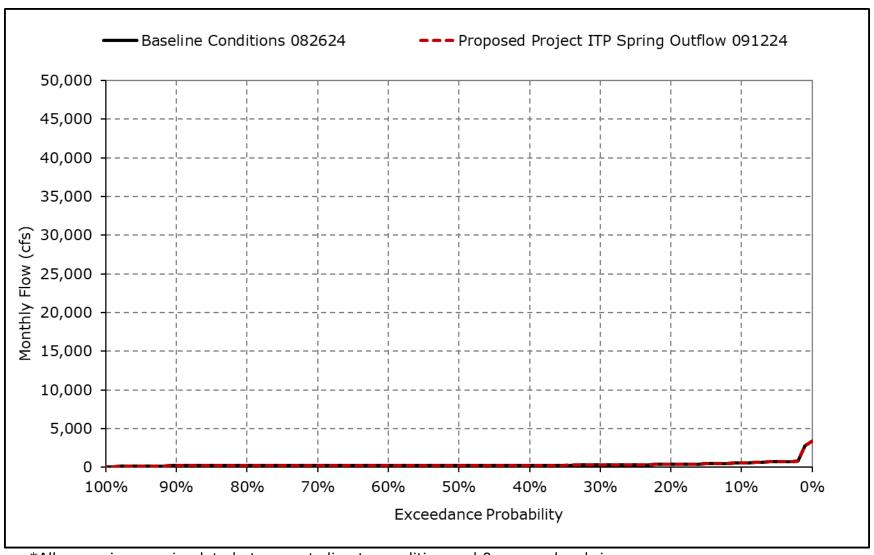

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3n. Yolo Bypass Flow, May

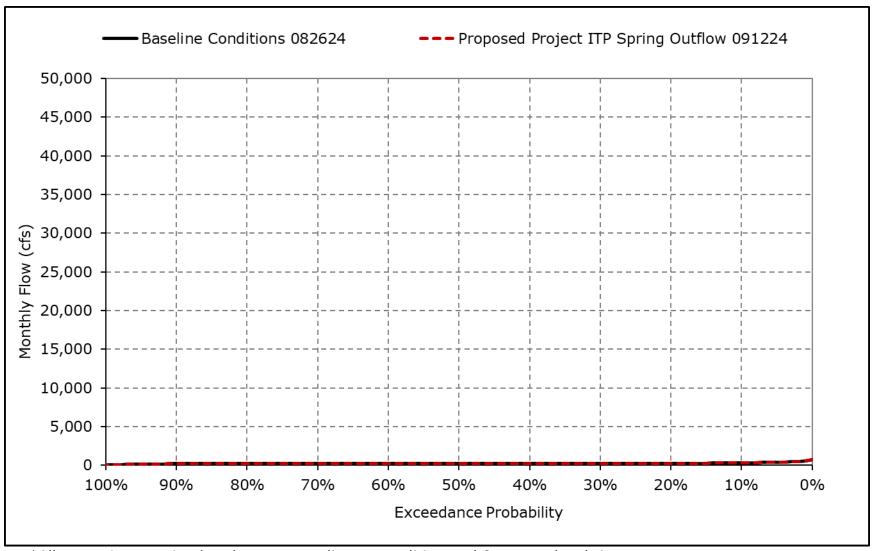

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3o. Yolo Bypass Flow, June

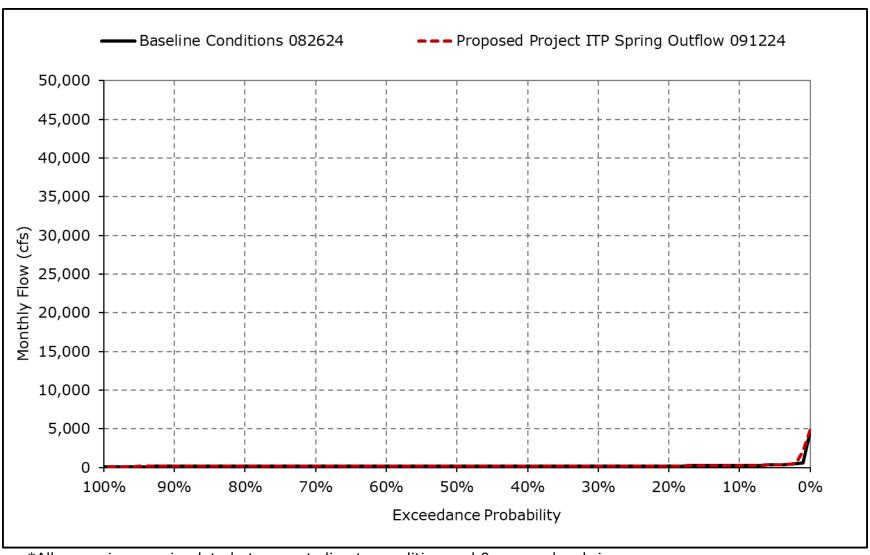

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3p. Yolo Bypass Flow, July

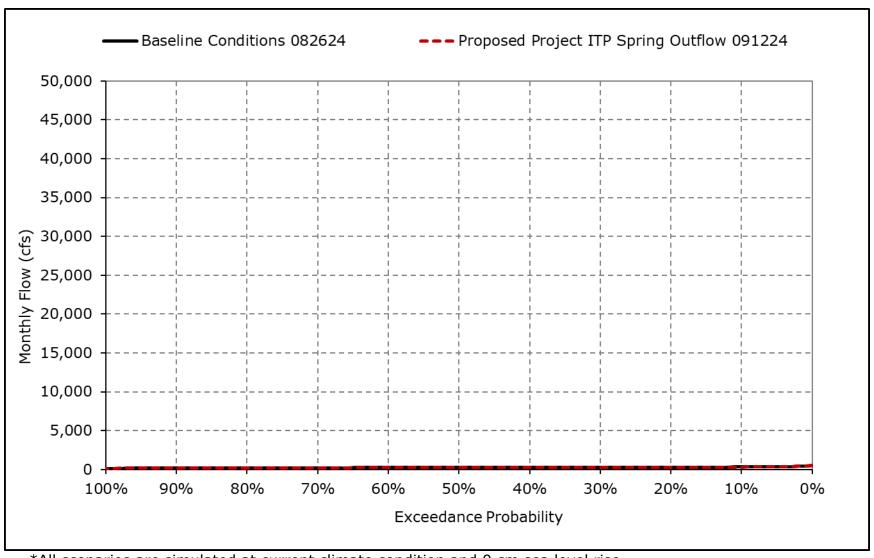

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3q. Yolo Bypass Flow, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-3r. Yolo Bypass Flow, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-3-4-1a. Sacramento River Flow at Rio Vista, Baseline Conditions 082624, Monthly Flow (cfs)

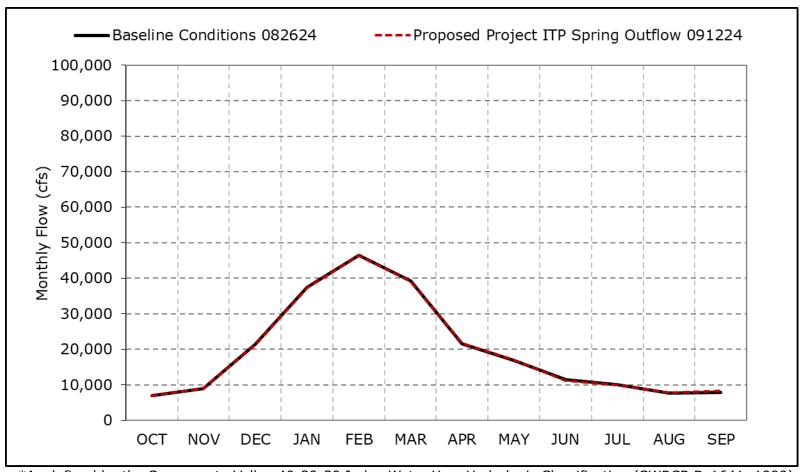
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	10,415	16,212	50,783	95,850	106,810	92,672	50,816	39,995	24,026	13,599	10,497	12,118
20% Exceedance	9,002	9,558	36,256	62,806	68,742	55,345	32,942	29,063	13,654	12,920	10,238	11,238
30% Exceedance	7,956	8,667	19,813	35,021	52,742	44,441	21,220	18,098	9,853	11,829	9,822	10,174
40% Exceedance	7,104	8,219	14,650	25,510	38,715	32,948	16,122	13,065	7,812	10,928	9,645	9,169
50% Exceedance	5,882	7,865	12,706	19,240	27,557	23,727	13,171	10,204	7,319	10,412	8,899	7,453
60% Exceedance	4,833	6,977	11,327	14,684	22,713	19,050	9,109	9,271	7,050	9,768	7,013	5,616
70% Exceedance	4,150	5,857	8,523	10,994	16,555	16,517	8,415	8,177	6,549	8,796	5,327	5,005
80% Exceedance	4,000	4,653	7,349	9,010	13,051	12,084	7,529	7,588	5,872	6,636	4,304	4,409
90% Exceedance	3,499	4,475	5,910	7,862	10,668	8,930	6,527	5,193	4,631	4,812	3,387	3,964
Full Simulation Period Average ^a	6,883	8,994	21,330	37,364	46,510	39,277	21,646	16,934	11,388	10,021	7,685	7,923
Wet Water Years (32%)	8,687	12,405	37,714	75,934	90,625	75,843	43,226	30,638	20,217	11,763	10,056	11,731
Above Normal Water Years (9%)	6,472	8,894	19,972	47,951	48,127	45,462	20,696	19,235	12,386	12,152	10,298	10,277
Below Normal Water Years (20%)	6,897	7,862	13,892	20,674	31,275	26,392	13,835	13,157	7,376	12,088	8,971	7,339
Dry Water Years (21%)	6,131	8,189	14,196	13,005	21,316	17,691	9,295	8,523	7,184	8,956	5,357	5,091
Critical Water Years (18%)	4,746	5,178	9,468	10,465	13,596	10,678	6,847	5,429	4,556	4,803	3,452	3,930

Table 4L-3-4-1b. Sacramento River Flow at Rio Vista, Proposed Project ITP Spring Outflow 091224, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	10,489	15,699	50,799	95,832	105,690	92,570	50,720	39,997	24,021	13,379	10,544	13,055
20% Exceedance	9,027	9,562	36,320	62,786	67,475	55,307	32,941	29,073	13,657	12,627	10,303	12,229
30% Exceedance	7,808	8,677	20,102	35,035	52,746	43,996	21,289	18,098	9,665	11,719	10,053	11,161
40% Exceedance	7,013	8,221	14,676	25,479	38,642	33,029	16,117	12,870	7,391	10,960	9,655	9,909
50% Exceedance	5,849	7,864	12,813	19,180	27,548	23,880	13,168	10,179	6,892	10,412	9,026	7,456
60% Exceedance	4,785	7,013	10,946	14,578	22,680	19,048	9,103	9,272	6,661	9,694	7,245	5,635
70% Exceedance	4,123	5,785	8,716	10,790	16,591	16,515	8,400	8,152	6,322	8,837	5,029	5,011
80% Exceedance	4,000	4,696	7,409	9,034	13,048	11,802	7,566	7,547	5,540	6,558	4,236	4,450
90% Exceedance	3,511	4,500	6,282	7,632	10,673	9,100	6,549	5,194	4,639	4,713	3,383	3,952
Full Simulation Period Average ^a	6,849	8,979	21,349	37,336	46,364	39,190	21,633	16,900	11,232	9,956	7,743	8,326
Wet Water Years (32%)	8,630	12,407	37,733	75,918	90,415	75,720	43,196	30,634	20,168	11,747	10,115	12,554
Above Normal Water Years (9%)	6,432	8,764	19,975	47,926	47,889	45,114	20,661	19,230	12,197	12,082	10,218	11,822
Below Normal Water Years (20%)	6,827	7,850	13,994	20,584	31,145	26,438	13,843	13,006	7,112	11,813	9,313	7,338
Dry Water Years (21%)	6,115	8,164	14,092	13,008	21,147	17,610	9,300	8,500	6,832	8,972	5,208	5,105
Critical Water Years (18%)	4,774	5,197	9,547	10,450	13,617	10,631	6,831	5,443	4,573	4,791	3,503	3,920

Table 4L-3-4-1c. Sacramento River Flow at Rio Vista, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	74	-513	16	-18	-1,120	-102	-96	2	-5	-219	47	936
20% Exceedance	25	4	64	-20	-1,267	-38	-1	10	3	-293	65	991
30% Exceedance	-148	10	289	14	4	-445	69	0	-188	-111	232	987
40% Exceedance	-90	2	26	-31	-73	81	-5	-196	-421	32	10	740
50% Exceedance	-33	0	107	-60	-9	153	-3	-25	-427	0	128	2
60% Exceedance	-48	35	-381	-107	-33	-2	-6	1	-389	-74	232	18
70% Exceedance	-27	-71	193	-204	36	-2	-14	-25	-227	41	-298	7
80% Exceedance	0	43	60	24	-2	-281	37	-41	-332	-78	-67	41
90% Exceedance	12	25	372	-231	4	170	22	1	8	-99	-4	-12
Full Simulation Period Average ^a	-34	-15	19	-27	-146	-87	-13	-34	-156	-65	58	403
Wet Water Years (32%)	-56	2	20	-16	-210	-123	-30	-4	-49	-15	59	823
Above Normal Water Years (9%)	-40	-129	3	-25	-238	-348	-35	-5	-189	-70	-79	1,545
Below Normal Water Years (20%)	-70	-12	102	-90	-130	46	8	-151	-264	-276	342	0
Dry Water Years (21%)	-16	-25	-104	3	-170	-81	5	-23	-352	16	-149	13
Critical Water Years (18%)	27	19	80	-14	21	-47	-16	14	17	-12	51	-9

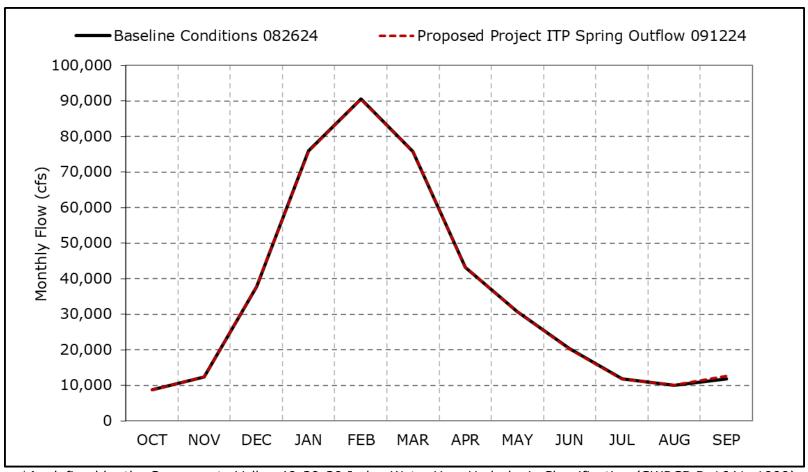

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

st Water Year Types results are displayed with water year - year type sorting.

Figure 4L-3-4a. Sacramento River Flow at Rio Vista, Long-Term Average Flow

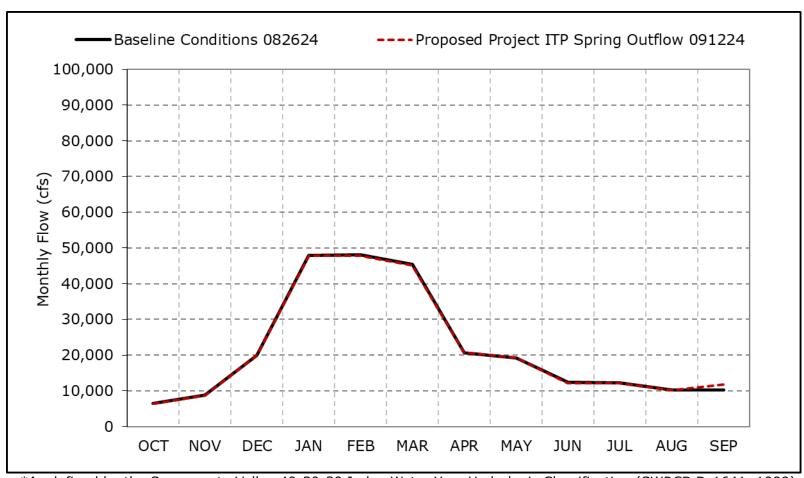


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4b. Sacramento River Flow at Rio Vista, Wet Year Average Flow

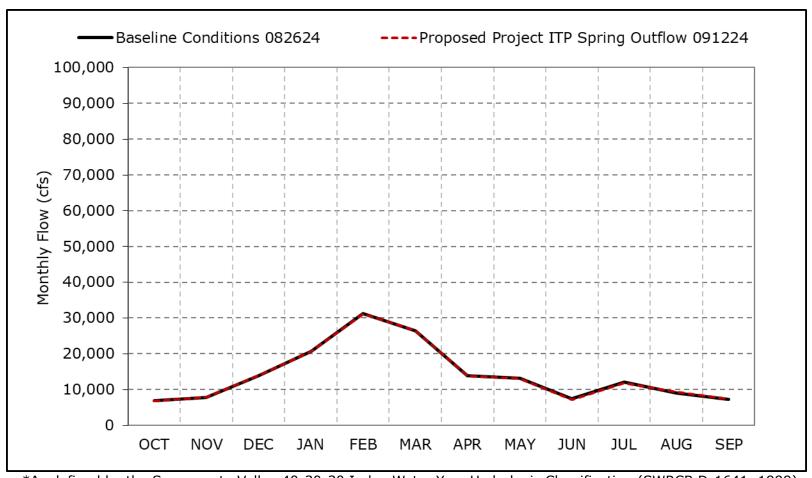


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4c. Sacramento River Flow at Rio Vista, Above Normal Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4d. Sacramento River Flow at Rio Vista, Below Normal Year Average Flow

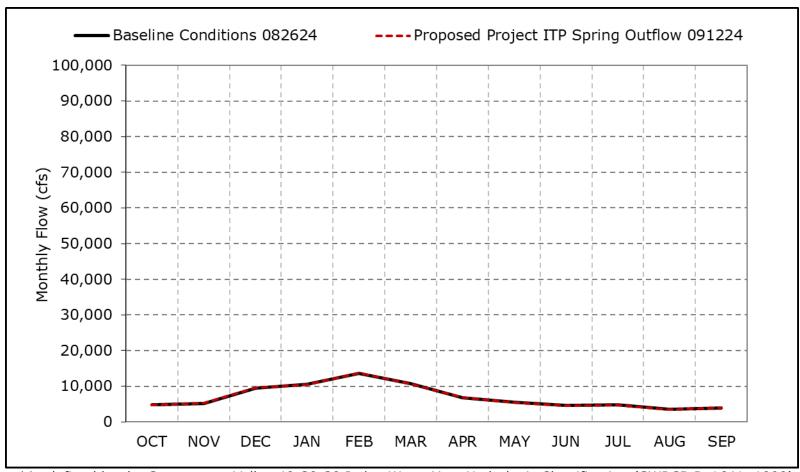


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4e. Sacramento River Flow at Rio Vista, Dry Year Average Flow

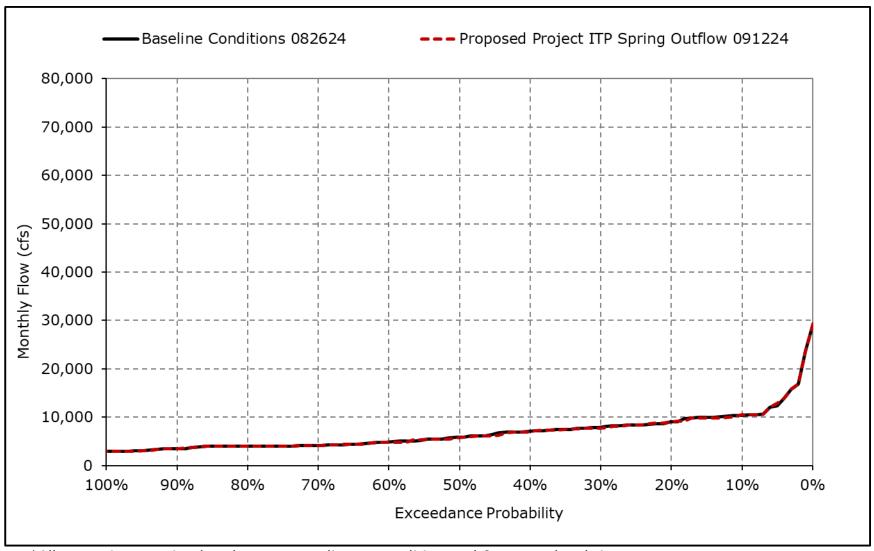


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4f. Sacramento River Flow at Rio Vista, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

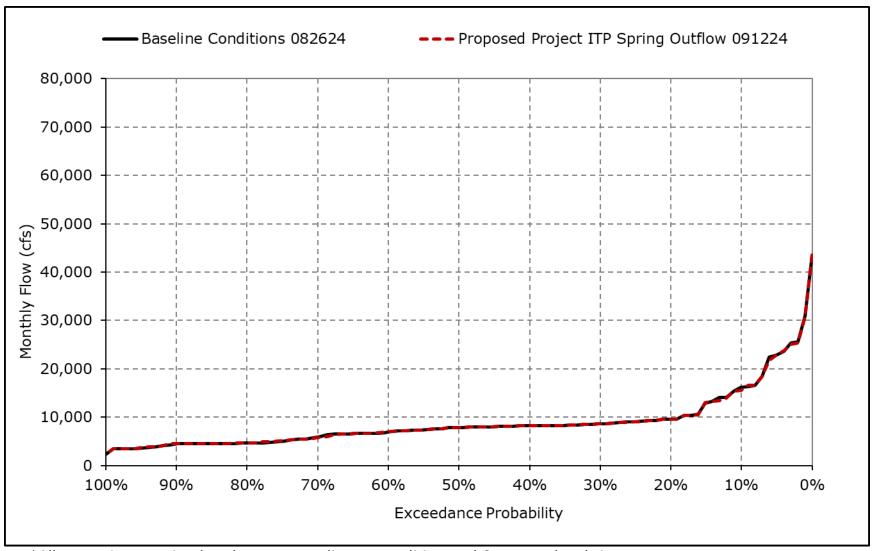

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4g. Sacramento River Flow at Rio Vista, October

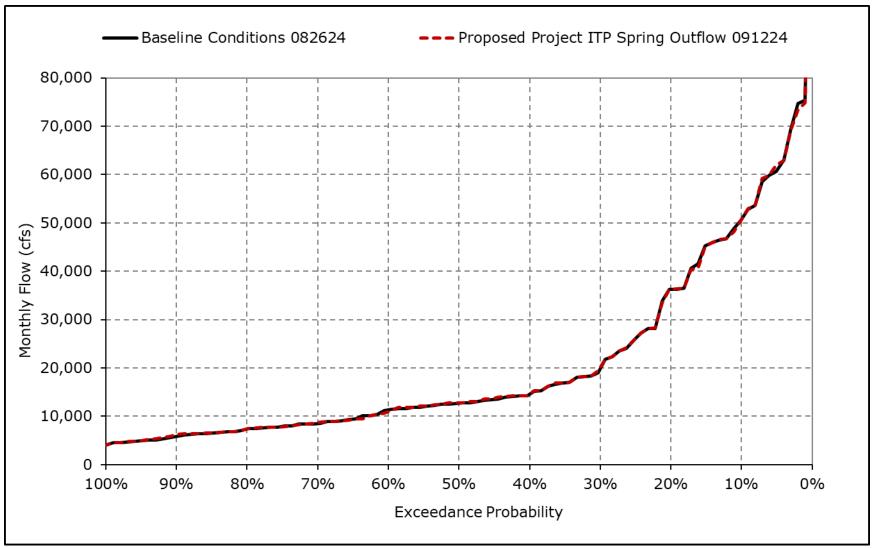

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4h. Sacramento River Flow at Rio Vista, November

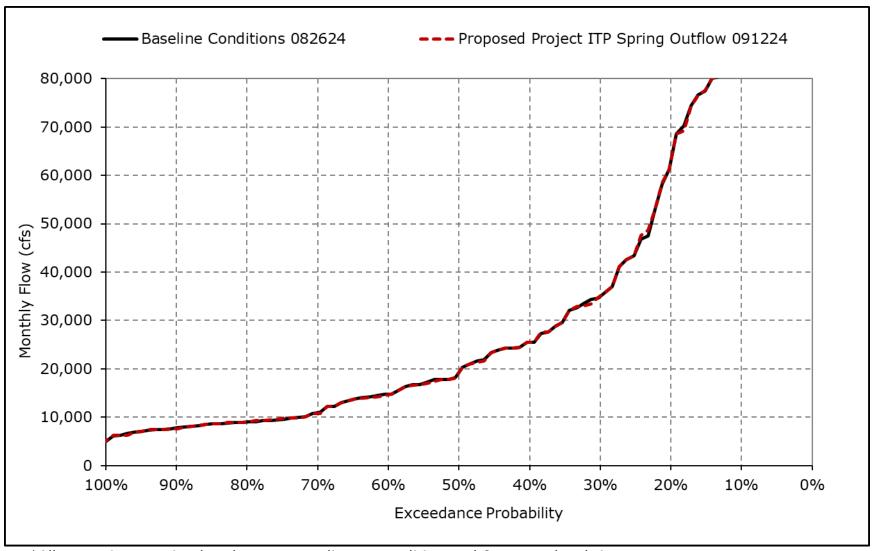

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4i. Sacramento River Flow at Rio Vista, December

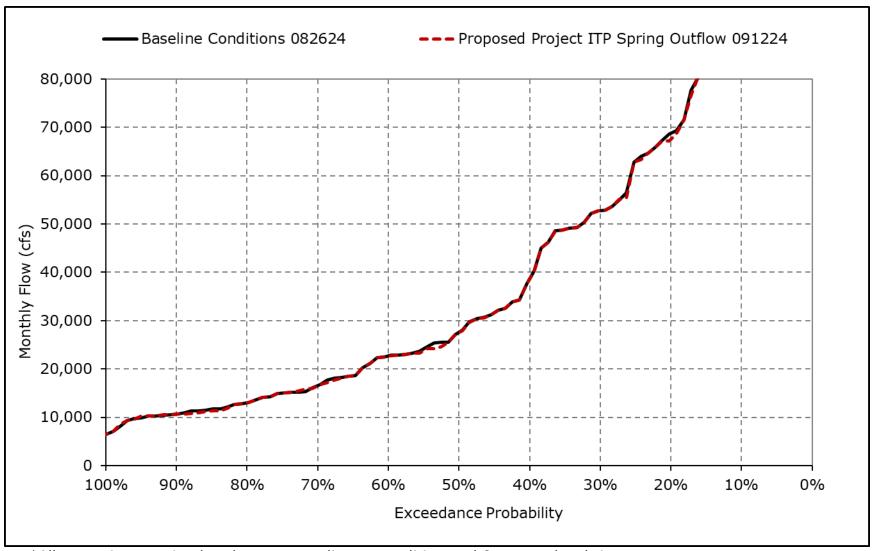

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4j. Sacramento River Flow at Rio Vista, January

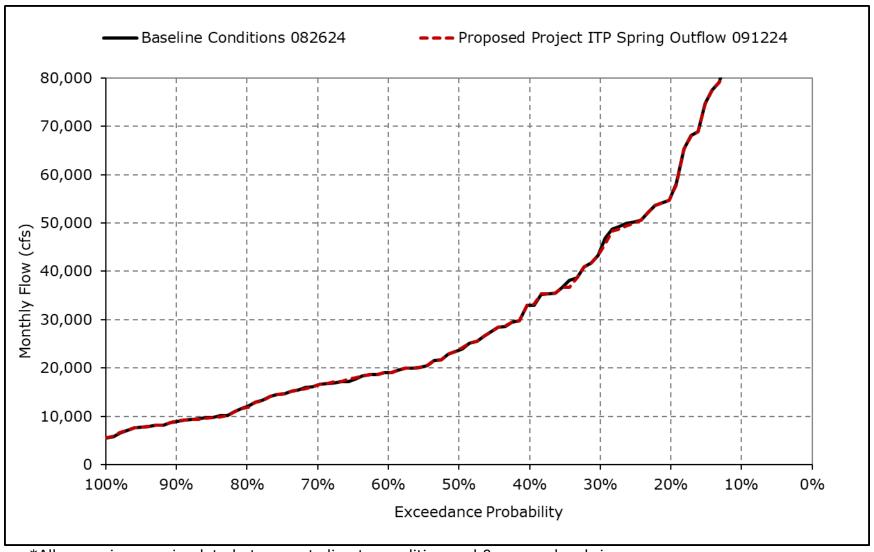

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4k. Sacramento River Flow at Rio Vista, February

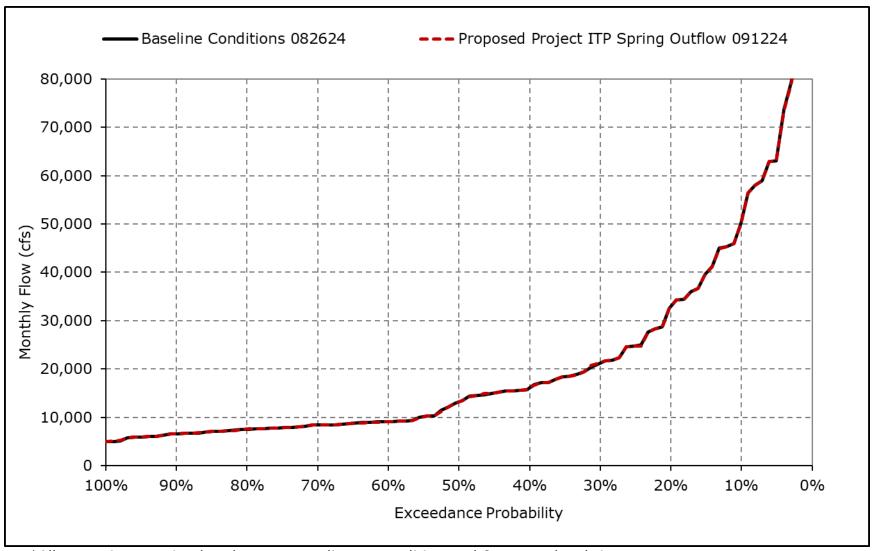

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4l. Sacramento River Flow at Rio Vista, March

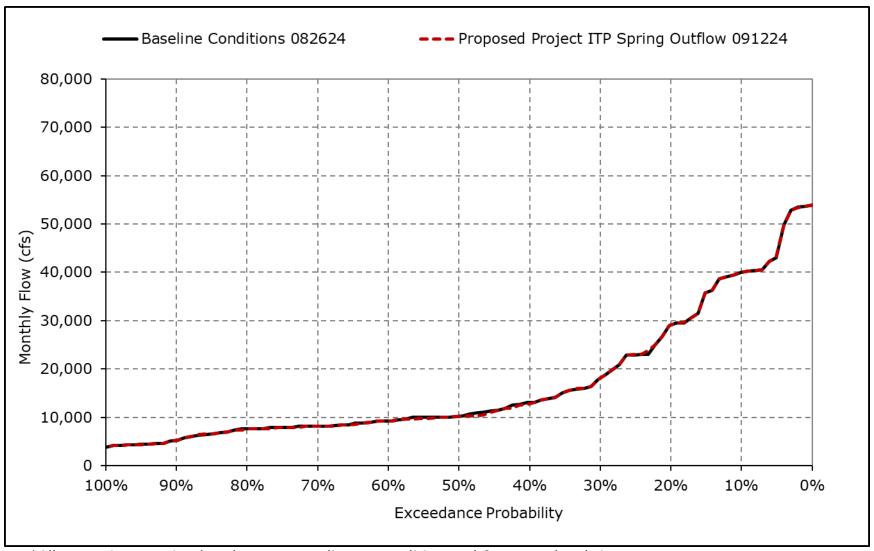

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4m. Sacramento River Flow at Rio Vista, April

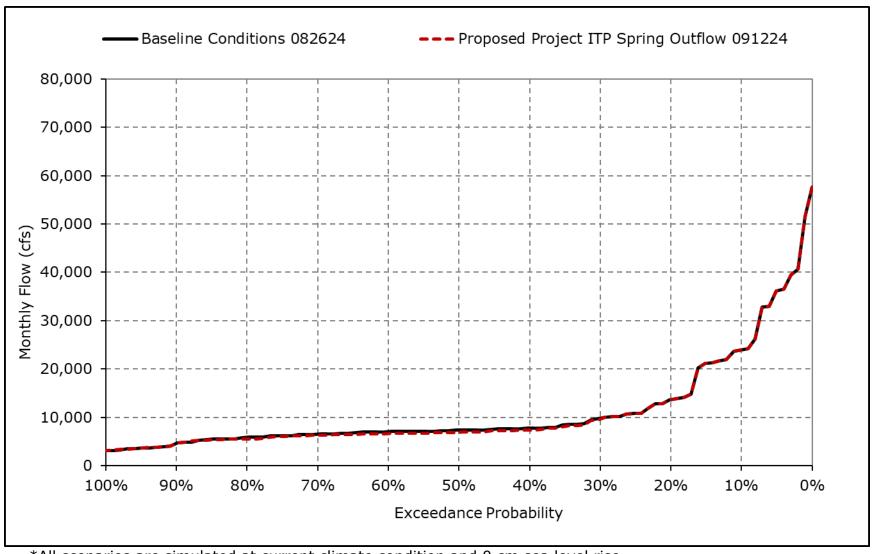

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4n. Sacramento River Flow at Rio Vista, May

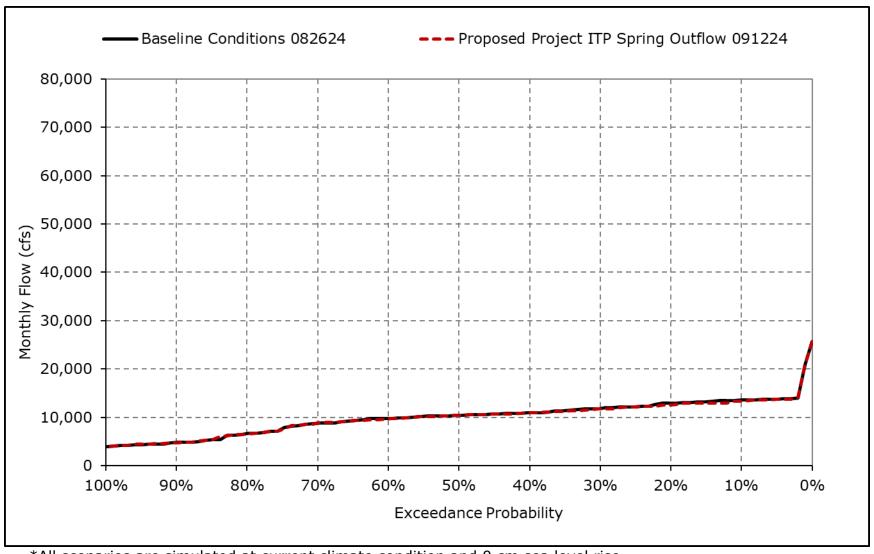

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4o. Sacramento River Flow at Rio Vista, June

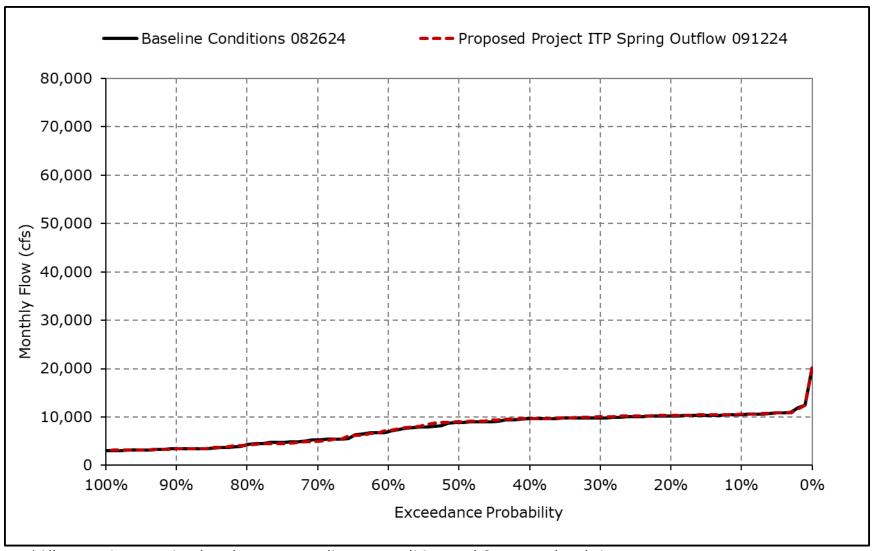

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4p. Sacramento River Flow at Rio Vista, July

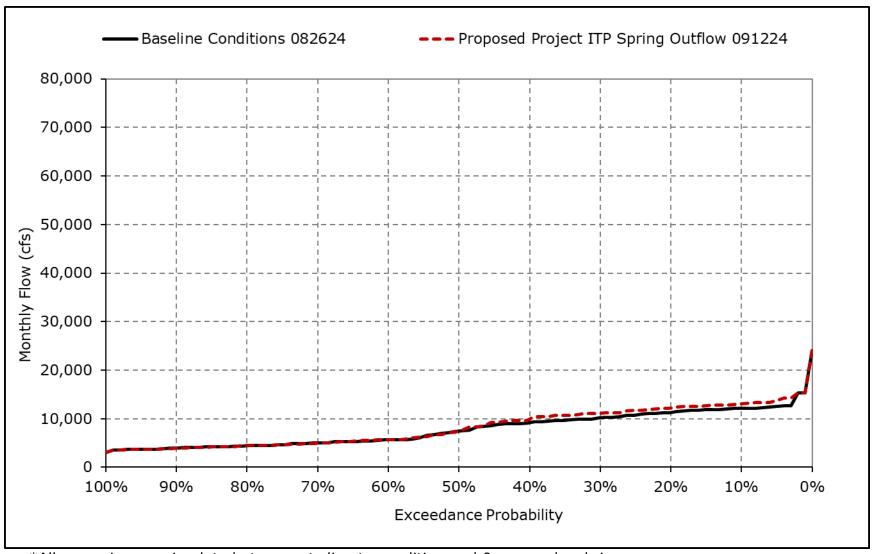

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4q. Sacramento River Flow at Rio Vista, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-4r. Sacramento River Flow at Rio Vista, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-3-5-1a. San Joaquin River at Vernalis, Baseline Conditions 082624, Monthly Flow (cfs)

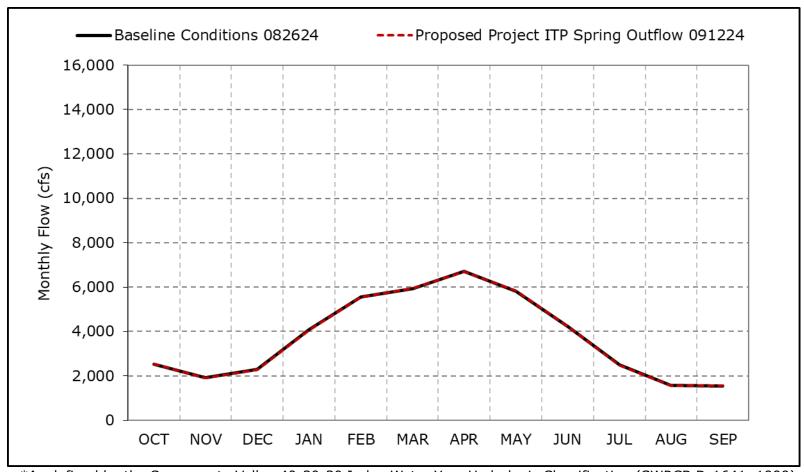
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,975	2,642	3,876	9,369	11,402	13,581	14,413	12,125	13,329	6,337	4,759	3,781
20% Exceedance	3,678	2,321	2,521	4,272	7,952	8,982	10,005	7,943	6,530	3,765	2,198	2,041
30% Exceedance	3,191	2,055	2,062	3,284	5,398	7,366	8,101	6,118	3,235	1,940	1,332	1,439
40% Exceedance	2,278	1,883	1,772	2,333	3,585	4,248	6,279	5,019	2,493	1,483	1,072	1,267
50% Exceedance	1,843	1,714	1,571	1,963	2,681	2,533	3,922	3,742	1,747	1,152	759	1,044
60% Exceedance	1,747	1,432	1,399	1,591	2,179	2,285	3,172	3,122	1,490	937	689	966
70% Exceedance	1,684	1,371	1,298	1,476	1,832	1,887	2,754	2,762	1,249	807	617	909
80% Exceedance	1,592	1,332	1,158	1,338	1,605	1,713	2,438	2,415	1,141	618	506	827
90% Exceedance	1,466	1,239	1,077	1,202	1,458	1,613	2,146	2,070	929	487	355	657
Full Simulation Period Average ^a	2,537	1,919	2,287	4,074	5,550	5,941	6,711	5,825	4,240	2,498	1,578	1,548
Wet Water Years (32%)	2,934	2,362	3,715	8,706	11,277	12,158	12,523	10,643	9,314	5,542	3,374	2,710
Above Normal Water Years (9%)	2,280	1,829	1,932	2,763	4,920	5,448	6,611	5,518	3,535	1,941	1,220	1,438
Below Normal Water Years (20%)	2,764	1,974	1,783	2,217	3,929	4,287	5,523	4,782	2,485	1,435	936	1,158
Dry Water Years (21%)	2,358	1,650	1,552	1,581	1,871	1,905	2,766	2,723	1,284	818	622	922
Critical Water Years (18%)	1,916	1,430	1,341	1,468	1,779	1,682	2,353	2,189	973	506	394	702

Table 4L-3-5-1b. San Joaquin River at Vernalis, Proposed Project ITP Spring Outflow 091224, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,970	2,639	3,873	9,358	11,399	13,577	14,414	12,118	13,321	6,335	4,759	3,778
20% Exceedance	3,675	2,319	2,518	4,286	7,950	8,982	10,002	7,940	6,529	3,762	2,196	2,039
30% Exceedance	3,191	2,053	2,060	3,282	5,394	7,364	8,098	6,112	3,232	1,940	1,328	1,434
40% Exceedance	2,276	1,882	1,770	2,330	3,583	4,244	6,277	5,015	2,491	1,480	1,068	1,262
50% Exceedance	1,840	1,711	1,567	1,963	2,678	2,529	3,920	3,736	1,741	1,142	755	1,048
60% Exceedance	1,737	1,429	1,395	1,589	2,177	2,282	3,169	3,113	1,482	931	682	962
70% Exceedance	1,679	1,379	1,293	1,474	1,831	1,883	2,751	2,758	1,243	807	602	903
80% Exceedance	1,576	1,330	1,154	1,335	1,602	1,707	2,435	2,405	1,140	606	487	823
90% Exceedance	1,463	1,232	1,080	1,201	1,459	1,611	2,144	2,067	916	490	366	677
Full Simulation Period Average ^a	2,536	1,918	2,284	4,070	5,547	5,937	6,708	5,821	4,236	2,493	1,574	1,547
Wet Water Years (32%)	2,929	2,357	3,711	8,696	11,272	12,152	12,519	10,639	9,310	5,538	3,371	2,708
Above Normal Water Years (9%)	2,289	1,843	1,938	2,763	4,918	5,443	6,608	5,513	3,531	1,937	1,214	1,433
Below Normal Water Years (20%)	2,771	1,976	1,781	2,215	3,927	4,284	5,519	4,777	2,480	1,429	930	1,153
Dry Water Years (21%)	2,355	1,648	1,550	1,579	1,868	1,902	2,762	2,718	1,279	812	616	925
Critical Water Years (18%)	1,908	1,426	1,338	1,466	1,776	1,680	2,351	2,188	969	501	394	706

Table 4L-3-5-1c. San Joaquin River at Vernalis, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-5	-3	-3	-12	-2	-3	1	-7	-8	-3	-1	-2
20% Exceedance	-3	-2	-3	14	-2	0	-3	-4	-2	-3	-2	-2
30% Exceedance	0	-2	-2	-2	-4	-2	-3	-6	-2	0	-4	-5
40% Exceedance	-2	-2	-2	-3	-2	-4	-3	-3	-2	-3	-4	-5
50% Exceedance	-3	-3	-3	0	-3	-3	-2	-6	-5	-9	-4	5
60% Exceedance	-10	-3	-4	-2	-2	-3	-3	-9	-8	-6	-7	-4
70% Exceedance	-5	8	-5	-2	-1	-4	-3	-4	-5	0	-16	-6
80% Exceedance	-16	-1	-4	-4	-3	-6	-3	-9	-1	-12	-19	-5
90% Exceedance	-3	-7	3	-1	1	-1	-2	-4	-12	2	11	20
Full Simulation Period Average ^a	-1	-1	-2	-5	-3	-4	-3	-4	-4	-5	-4	-1
Wet Water Years (32%)	-4	-5	-5	-11	-4	-7	-4	-4	-5	-4	-3	-3
Above Normal Water Years (9%)	10	13	6	1	-3	-5	-4	-5	-4	-4	-6	-5
Below Normal Water Years (20%)	7	1	-2	-3	-2	-3	-3	-4	-5	-6	-6	-5
Dry Water Years (21%)	-4	-2	-2	-2	-2	-3	-4	-5	-5	-6	-6	2
Critical Water Years (18%)	-8	-5	-3	-2	-3	-2	-2	-1	-4	-5	0	4

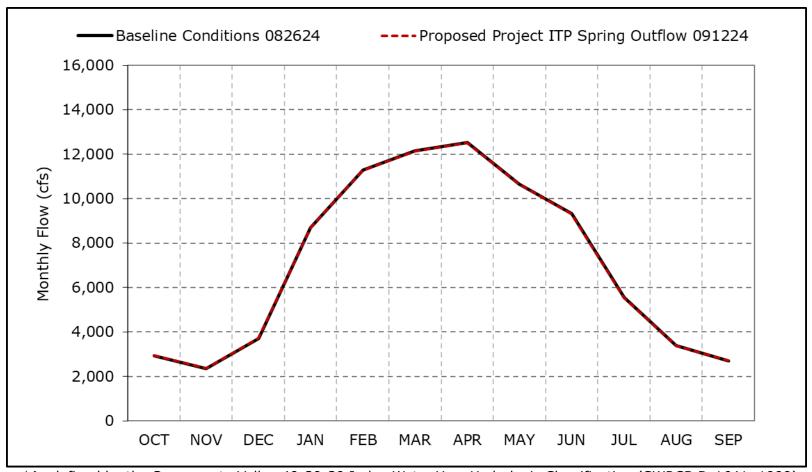

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 $[\]ensuremath{^{*}}$ Water Year Types results are displayed with water year - year type sorting.

Figure 4L-3-5a. San Joaquin River at Vernalis, Long-Term Average Flow

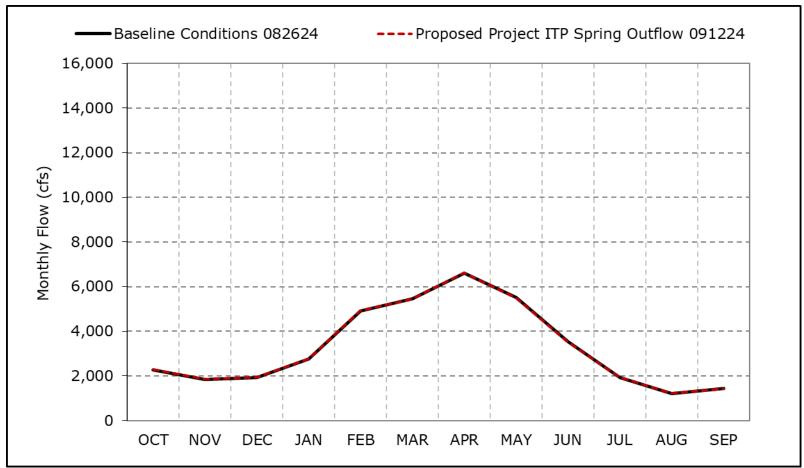


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5b. San Joaquin River at Vernalis, Wet Year Average Flow

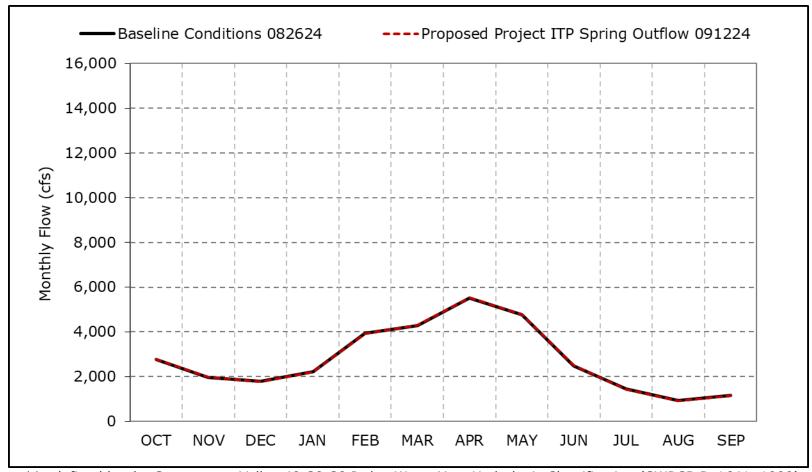


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5c. San Joaquin River at Vernalis, Above Normal Year Average Flow

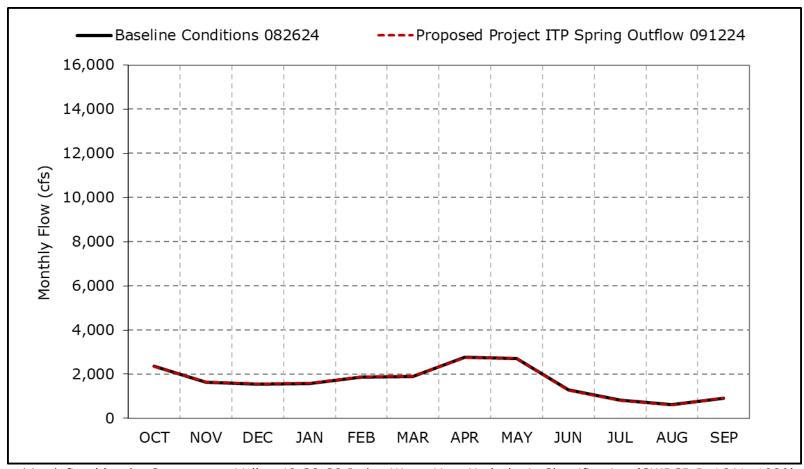


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5d. San Joaquin River at Vernalis, Below Normal Year Average Flow

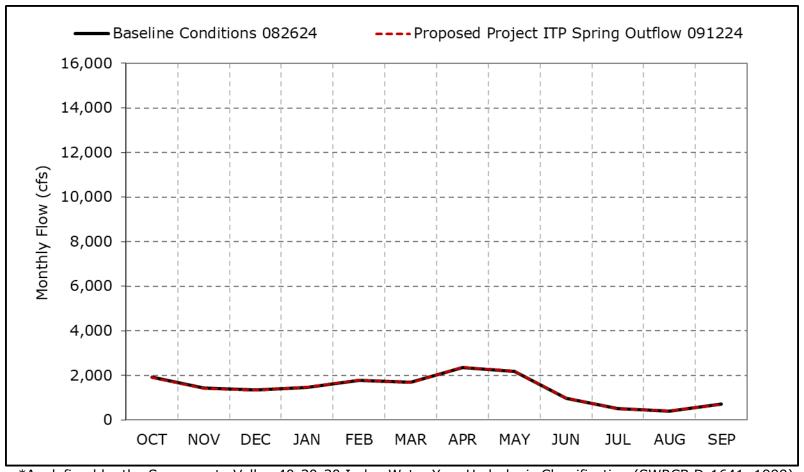


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5e. San Joaquin River at Vernalis, Dry Year Average Flow

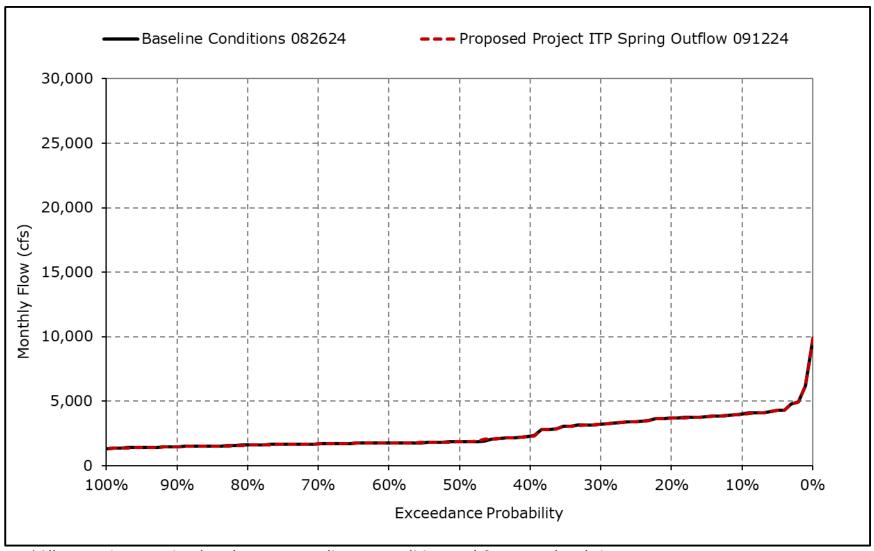


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5f. San Joaquin River at Vernalis, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

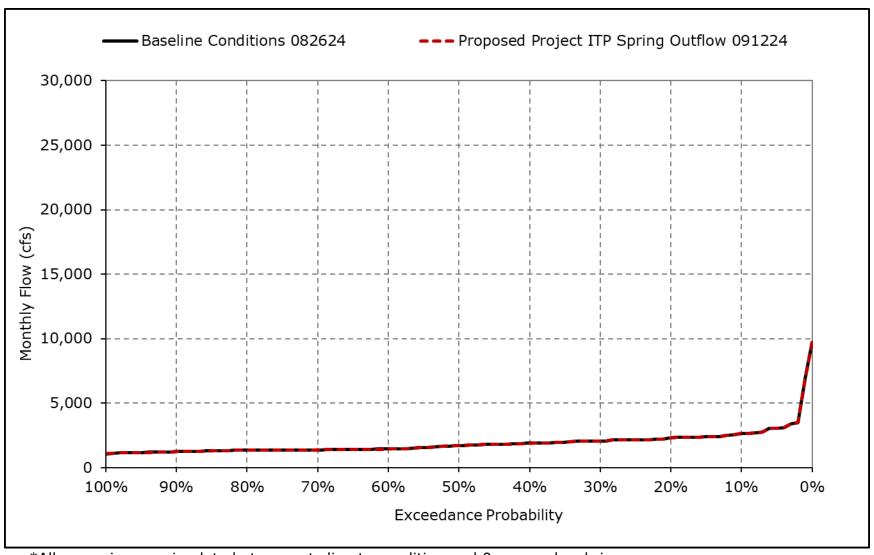

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5g. San Joaquin River at Vernalis, October

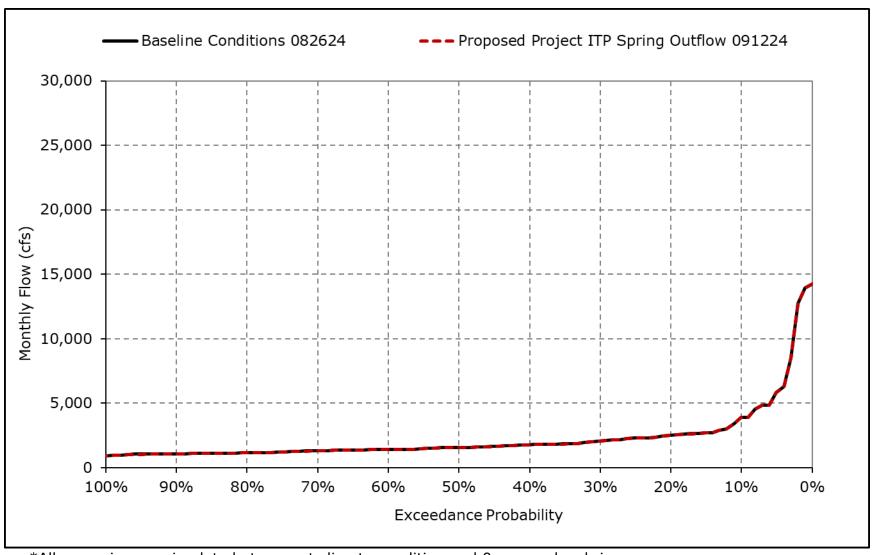

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5h. San Joaquin River at Vernalis, November

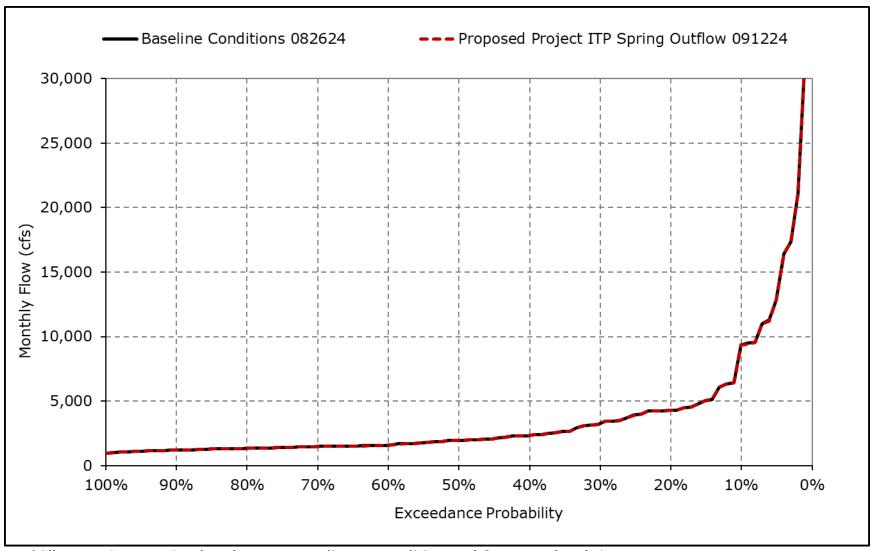

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5i. San Joaquin River at Vernalis, December

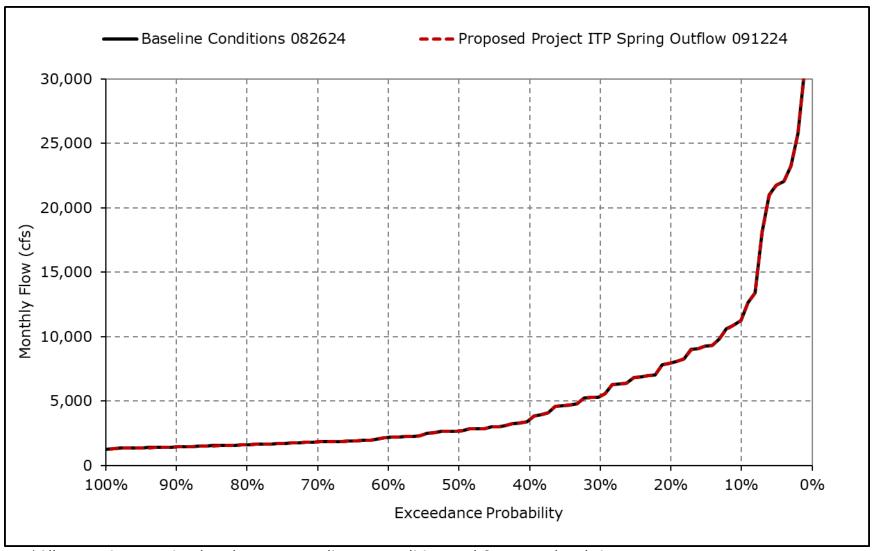

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5j. San Joaquin River at Vernalis, January

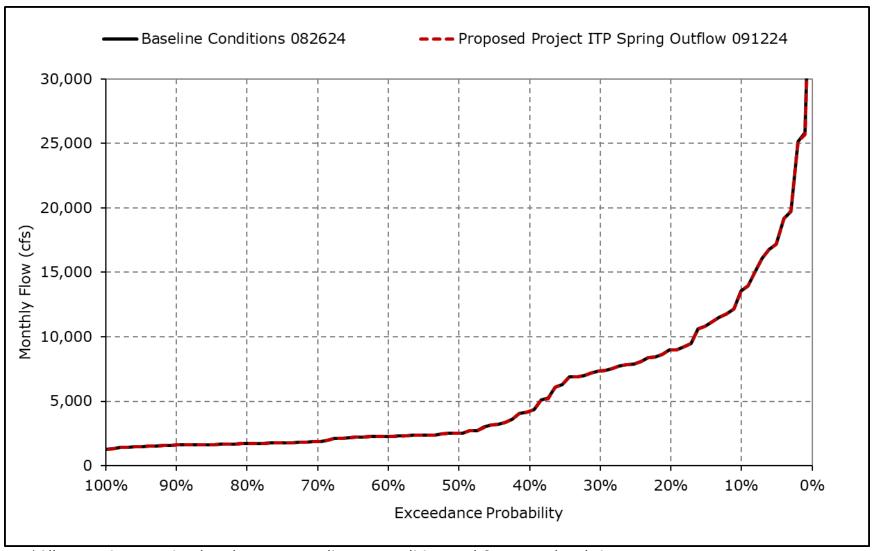

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5k. San Joaquin River at Vernalis, February

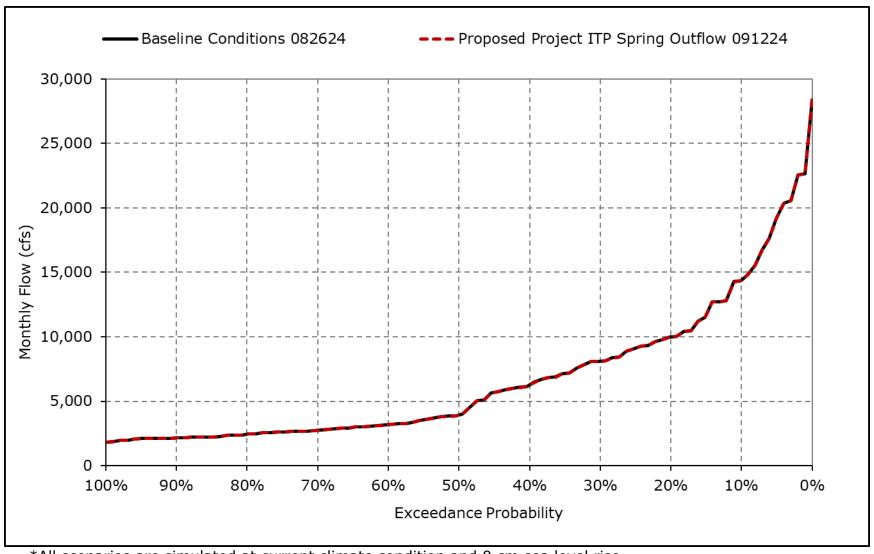

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5I. San Joaquin River at Vernalis, March

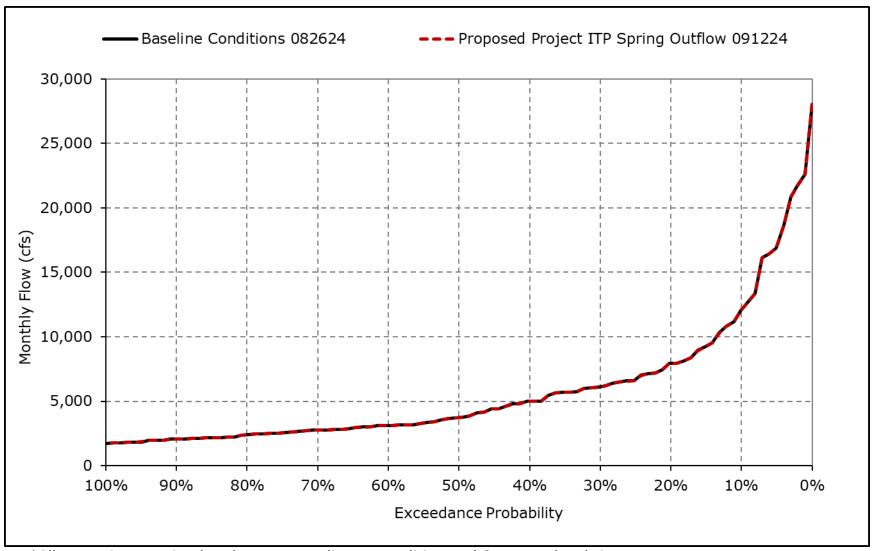

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5m. San Joaquin River at Vernalis, April

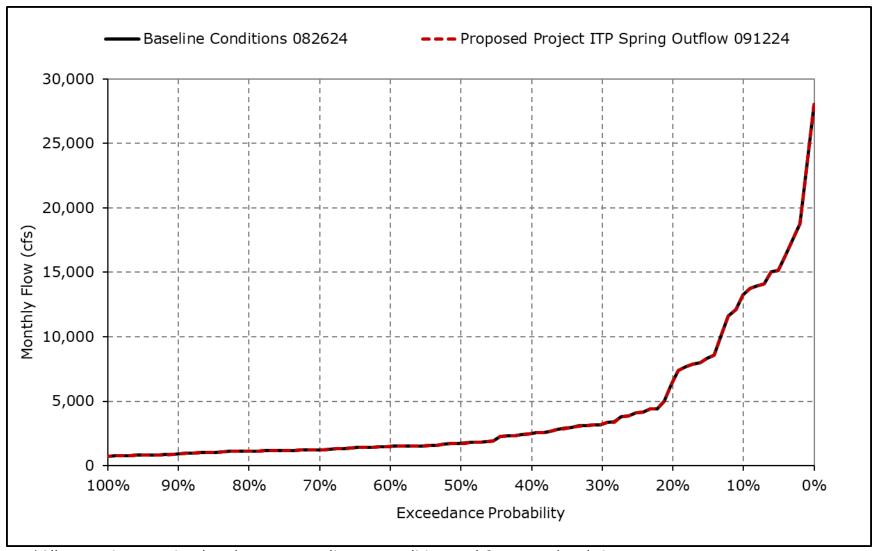

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5n. San Joaquin River at Vernalis, May

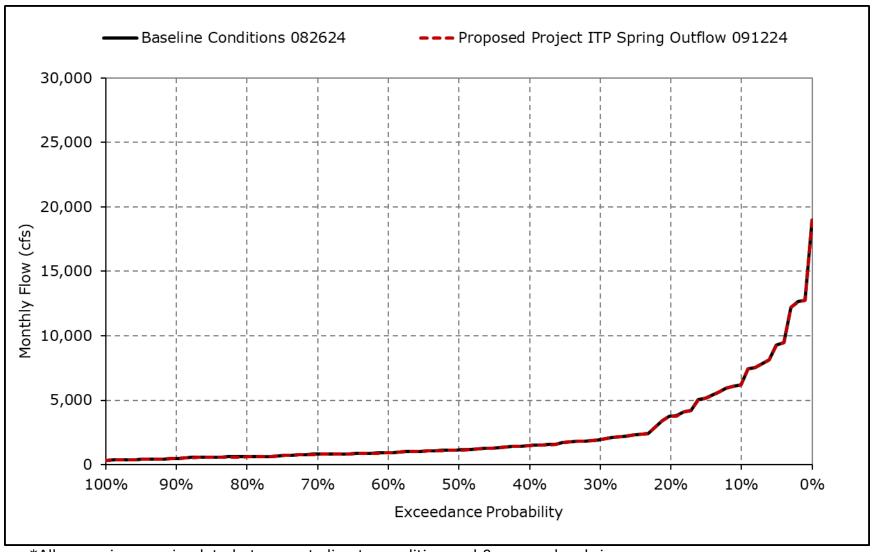

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5o. San Joaquin River at Vernalis, June

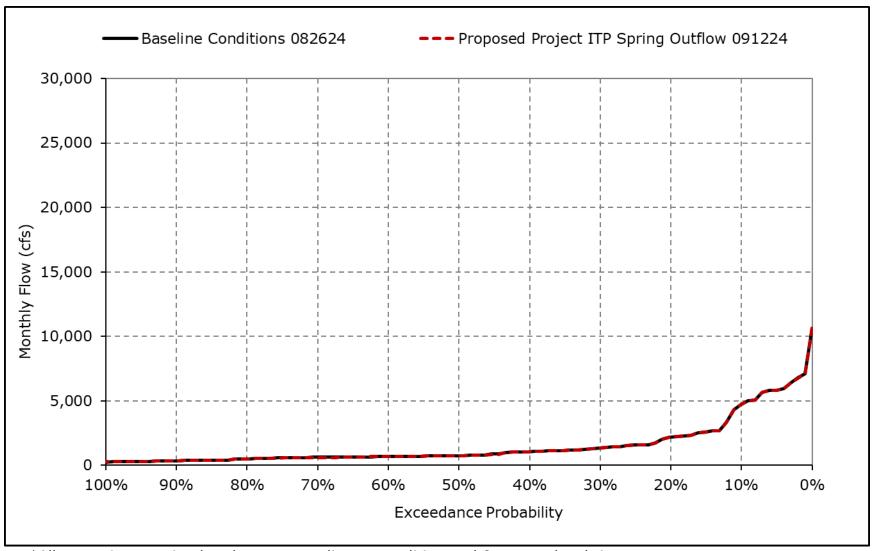

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5p. San Joaquin River at Vernalis, July

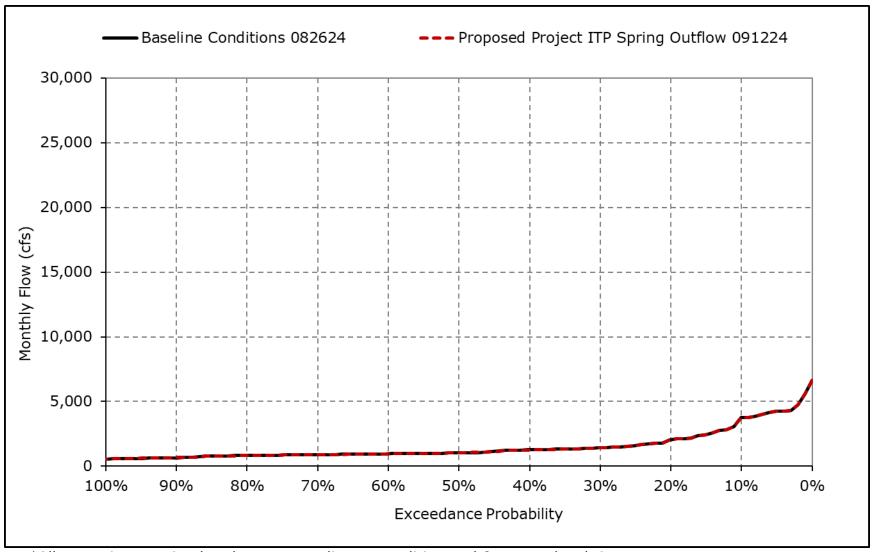

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5q. San Joaquin River at Vernalis, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-5r. San Joaquin River at Vernalis, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-3-6-1a. San Joaquin River at Vernalis (60-20-20), Baseline Conditions 082624, Monthly Flow (cfs)

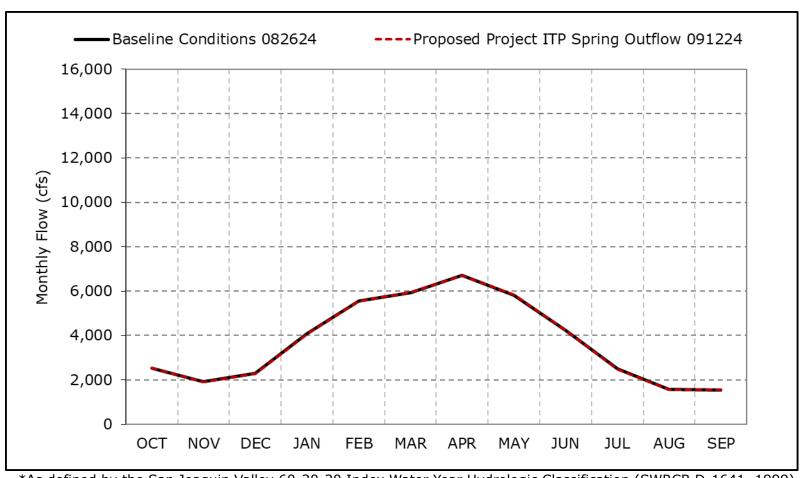
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,975	2,642	3,876	9,369	11,402	13,581	14,413	12,125	13,329	6,337	4,759	3,781
20% Exceedance	3,678	2,321	2,521	4,272	7,952	8,982	10,005	7,943	6,530	3,765	2,198	2,041
30% Exceedance	3,191	2,055	2,062	3,284	5,398	7,366	8,101	6,118	3,235	1,940	1,332	1,439
40% Exceedance	2,278	1,883	1,772	2,333	3,585	4,248	6,279	5,019	2,493	1,483	1,072	1,267
50% Exceedance	1,843	1,714	1,571	1,963	2,681	2,533	3,922	3,742	1,747	1,152	759	1,044
60% Exceedance	1,747	1,432	1,399	1,591	2,179	2,285	3,172	3,122	1,490	937	689	966
70% Exceedance	1,684	1,371	1,298	1,476	1,832	1,887	2,754	2,762	1,249	807	617	909
80% Exceedance	1,592	1,332	1,158	1,338	1,605	1,713	2,438	2,415	1,141	618	506	827
90% Exceedance	1,466	1,239	1,077	1,202	1,458	1,613	2,146	2,070	929	487	355	657
Full Simulation Period Average ^a	2,537	1,919	2,287	4,074	5,550	5,941	6,711	5,825	4,240	2,498	1,578	1,548
Wet Water Years (24%)	2,783	2,057	3,645	9,748	13,118	14,606	14,700	12,756	11,680	6,931	4,168	3,248
Above Normal Water Years (18%)	2,635	2,339	2,684	4,072	6,066	5,977	7,545	5,934	3,691	2,026	1,314	1,431
Below Normal Water Years (13%)	2,554	1,950	2,041	2,194	3,510	3,745	5,076	4,453	1,962	1,176	757	987
Dry Water Years (13%)	2,847	1,934	1,714	1,842	2,026	2,312	3,080	3,042	1,414	915	644	913
Critical Water Years (32%)	2,164	1,561	1,377	1,491	1,844	1,788	2,390	2,253	1,043	618	498	826

Table 4L-3-6-1b. San Joaquin River at Vernalis (60-20-20), Proposed Project ITP Spring Outflow 091224, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,970	2,639	3,873	9,358	11,399	13,577	14,414	12,118	13,321	6,335	4,759	3,778
20% Exceedance	3,675	2,319	2,518	4,286	7,950	8,982	10,002	7,940	6,529	3,762	2,196	2,039
30% Exceedance	3,191	2,053	2,060	3,282	5,394	7,364	8,098	6,112	3,232	1,940	1,328	1,434
40% Exceedance	2,276	1,882	1,770	2,330	3,583	4,244	6,277	5,015	2,491	1,480	1,068	1,262
50% Exceedance	1,840	1,711	1,567	1,963	2,678	2,529	3,920	3,736	1,741	1,142	755	1,048
60% Exceedance	1,737	1,429	1,395	1,589	2,177	2,282	3,169	3,113	1,482	931	682	962
70% Exceedance	1,679	1,379	1,293	1,474	1,831	1,883	2,751	2,758	1,243	807	602	903
80% Exceedance	1,576	1,330	1,154	1,335	1,602	1,707	2,435	2,405	1,140	606	487	823
90% Exceedance	1,463	1,232	1,080	1,201	1,459	1,611	2,144	2,067	916	490	366	677
Full Simulation Period Average ^a	2,536	1,918	2,284	4,070	5,547	5,937	6,708	5,821	4,236	2,493	1,574	1,547
Wet Water Years (24%)	2,778	2,052	3,640	9,735	13,113	14,598	14,695	12,751	11,675	6,927	4,164	3,245
Above Normal Water Years (18%)	2,647	2,346	2,684	4,071	6,064	5,975	7,543	5,931	3,687	2,023	1,311	1,428
Below Normal Water Years (13%)	2,553	1,950	2,039	2,192	3,508	3,742	5,073	4,449	1,957	1,170	750	981
Dry Water Years (13%)	2,848	1,936	1,712	1,839	2,023	2,309	3,076	3,036	1,408	908	634	912
Critical Water Years (32%)	2,157	1,557	1,374	1,489	1,842	1,786	2,387	2,250	1,040	613	497	829

Table 4L-3-6-1c. San Joaquin River at Vernalis (60-20-20), Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-5	-3	-3	-12	-2	-3	1	-7	-8	-3	-1	-2
20% Exceedance	-3	-2	-3	14	-2	0	-3	-4	-2	-3	-2	-2
30% Exceedance	0	-2	-2	-2	-4	-2	-3	-6	-2	0	-4	-5
40% Exceedance	-2	-2	-2	-3	-2	-4	-3	-3	-2	-3	-4	-5
50% Exceedance	-3	-3	-3	0	-3	-3	-2	-6	-5	-9	-4	5
60% Exceedance	-10	-3	-4	-2	-2	-3	-3	-9	-8	-6	-7	-4
70% Exceedance	-5	8	-5	-2	-1	-4	-3	-4	-5	0	-16	-6
80% Exceedance	-16	-1	-4	-4	-3	-6	-3	-9	-1	-12	-19	-5
90% Exceedance	-3	-7	3	-1	1	-1	-2	-4	-12	2	11	20
Full Simulation Period Average ^a	-1	-1	-2	-5	-3	-4	-3	-4	-4	-5	-4	-1
Wet Water Years (24%)	-5	-5	-5	-13	-5	-8	-4	-5	-5	-4	-3	-2
Above Normal Water Years (18%)	12	7	1	-1	-1	-2	-3	-3	-4	-3	-3	-2
Below Normal Water Years (13%)	-1	0	-1	-2	-2	-3	-3	-4	-4	-6	-7	-7
Dry Water Years (13%)	1	2	-2	-3	-3	-3	-5	-6	-6	-8	-10	-1
Critical Water Years (32%)	-7	-4	-3	-2	-3	-3	-3	-3	-4	-5	-1	3

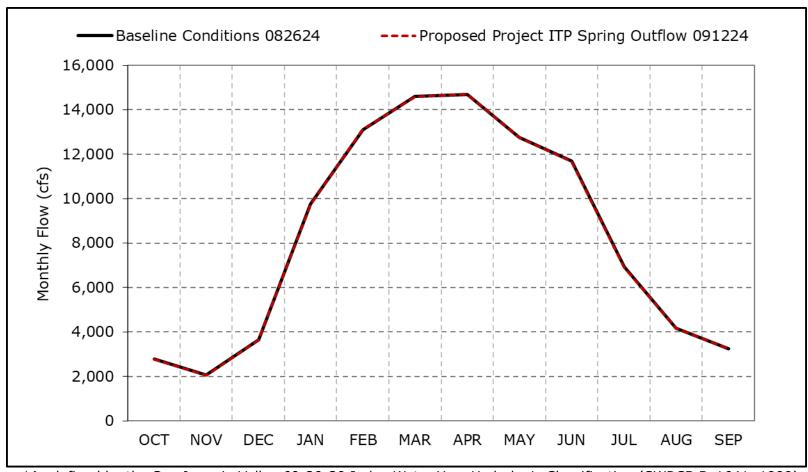

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*} Water Year Types results are displayed with water year - year type sorting.

Figure 4L-3-6a. San Joaquin River at Vernalis (60-20-20), Long-Term Average Flow

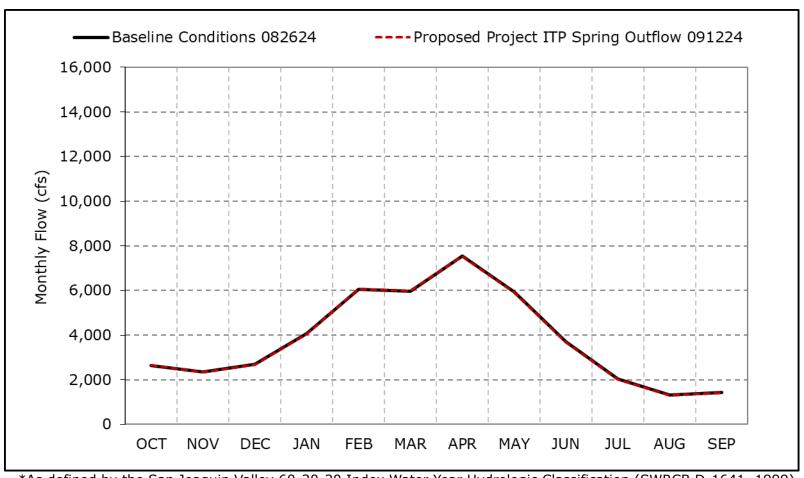


^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-6b. San Joaquin River at Vernalis (60-20-20), Wet Year Average Flow

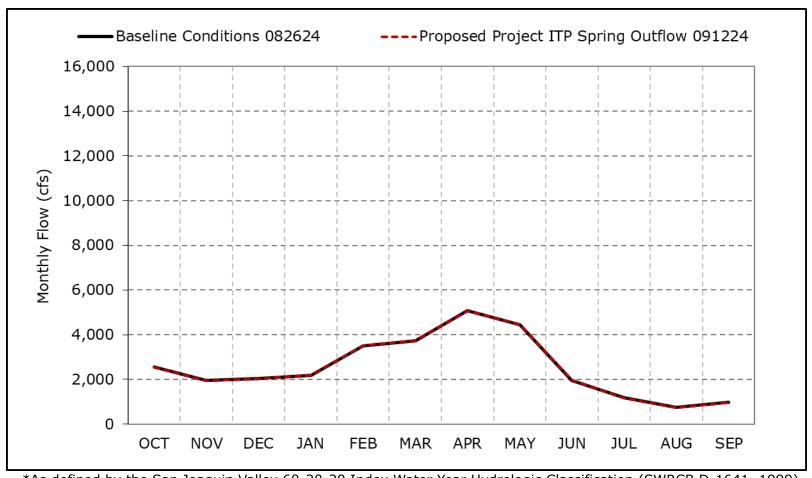


^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-6c. San Joaquin River at Vernalis (60-20-20), Above Normal Year Average Flow

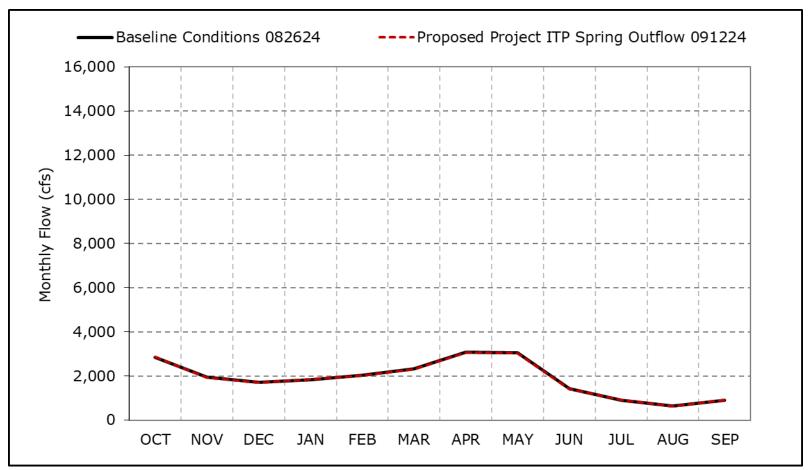


^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-6d. San Joaquin River at Vernalis (60-20-20), Below Normal Year Average Flow

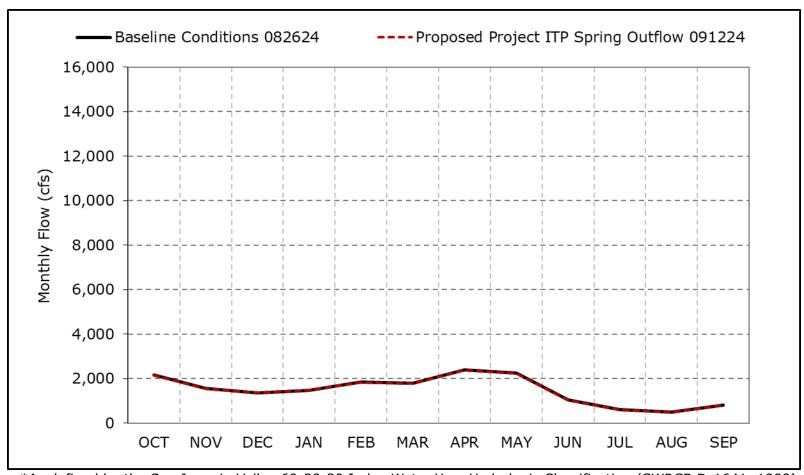


^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-6e. San Joaquin River at Vernalis (60-20-20), Dry Year Average Flow



^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-6f. San Joaquin River at Vernalis (60-20-20), Critical Year Average Flow

^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-3-7-1a. Mokelumne River below Cosumnes, Baseline Conditions 082624, Monthly Flow (cfs)

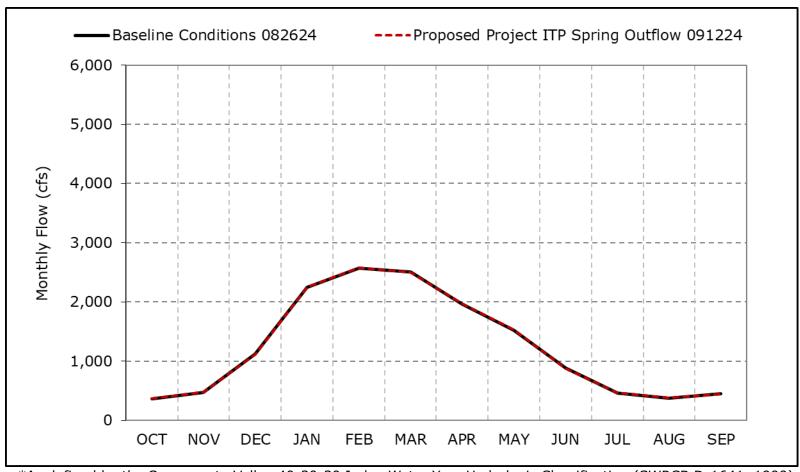
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	532	717	2,529	6,241	5,962	5,448	4,818	4,237	2,330	978	763	866
20% Exceedance	420	517	1,390	3,739	3,980	3,727	2,754	2,430	1,739	794	722	839
30% Exceedance	374	432	812	1,935	3,068	2,857	1,926	1,546	1,155	644	680	805
40% Exceedance	345	385	595	1,243	2,028	2,277	1,717	1,100	607	550	643	754
50% Exceedance	325	360	510	906	1,275	1,500	1,320	858	407	122	164	655
60% Exceedance	307	341	438	685	1,086	1,294	904	605	275	81	72	73
70% Exceedance	261	313	409	531	808	1,036	714	469	131	73	62	60
80% Exceedance	222	275	373	461	599	793	610	314	79	54	48	49
90% Exceedance	208	225	276	370	476	547	414	135	58	39	30	35
Full Simulation Period Average ^a	369	473	1,120	2,248	2,573	2,504	1,965	1,526	882	463	375	448
Wet Water Years (32%)	472	707	2,210	5,061	5,057	4,759	3,820	3,227	1,950	1,043	739	849
Above Normal Water Years (9%)	310	390	713	2,101	2,398	2,468	1,664	1,425	976	464	545	634
Below Normal Water Years (20%)	367	412	740	1,106	1,907	2,009	1,625	1,055	560	282	306	410
Dry Water Years (21%)	320	361	554	646	1,055	1,162	916	526	194	112	107	142
Critical Water Years (18%)	274	299	469	458	754	627	420	244	97	40	35	41

Table 4L-3-7-1b. Mokelumne River below Cosumnes, Proposed Project ITP Spring Outflow 091224, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	532	717	2,529	6,241	5,962	5,448	4,818	4,237	2,330	978	763	866
20% Exceedance	420	517	1,390	3,739	3,980	3,727	2,754	2,430	1,739	794	722	839
30% Exceedance	374	432	812	1,935	3,068	2,857	1,926	1,545	1,155	648	680	805
40% Exceedance	345	385	595	1,243	2,028	2,277	1,717	1,100	607	550	643	754
50% Exceedance	325	360	510	906	1,275	1,500	1,320	858	407	122	164	655
60% Exceedance	307	341	438	685	1,086	1,294	904	605	275	81	72	73
70% Exceedance	261	313	409	531	808	1,036	714	469	131	73	62	60
80% Exceedance	222	275	373	461	599	793	610	314	79	54	48	49
90% Exceedance	208	225	276	370	476	549	414	135	59	39	30	35
Full Simulation Period Average ^a	369	473	1,120	2,248	2,573	2,504	1,965	1,526	882	463	375	448
Wet Water Years (32%)	472	707	2,210	5,061	5,057	4,759	3,820	3,227	1,950	1,043	739	849
Above Normal Water Years (9%)	310	390	713	2,101	2,398	2,468	1,664	1,425	976	464	545	634
Below Normal Water Years (20%)	367	412	740	1,106	1,907	2,009	1,625	1,055	559	282	305	410
Dry Water Years (21%)	320	361	554	646	1,055	1,162	916	526	194	112	106	142
Critical Water Years (18%)	274	299	469	458	754	627	420	244	97	40	35	41

Table 4L-3-7-1c. Mokelumne River below Cosumnes, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
20% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
30% Exceedance	0	0	0	0	0	0	0	0	-1	4	0	0
40% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
50% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
60% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
70% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
80% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
90% Exceedance	0	0	0	0	0	1	0	0	0	0	0	0
Full Simulation Period Average ^a	0	0	0	0	0	0	0	0	0	0	0	0
Wet Water Years (32%)	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal Water Years (9%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal Water Years (20%)	0	0	0	0	0	0	0	0	0	0	-1	0
Dry Water Years (21%)	0	0	0	0	0	0	0	0	0	0	-1	0
Critical Water Years (18%)	0	0	0	0	0	0	0	0	0	0	0	0

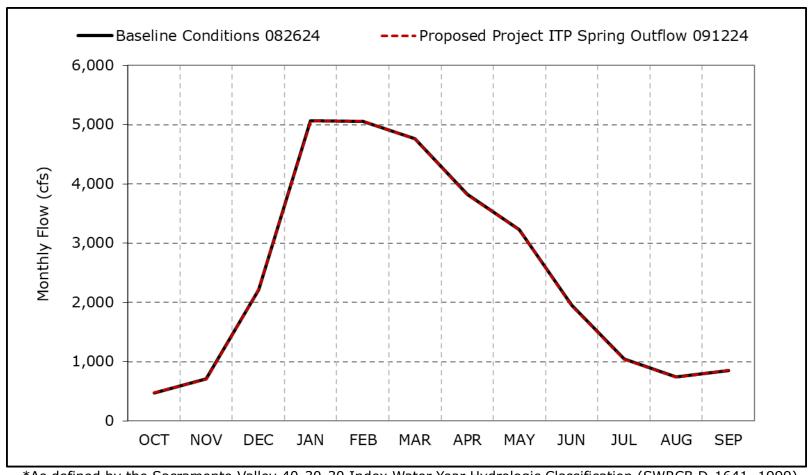

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*} Water Year Types results are displayed with water year - year type sorting.

Figure 4L-3-7a. Mokelumne River below Cosumnes, Long-Term Average Flow

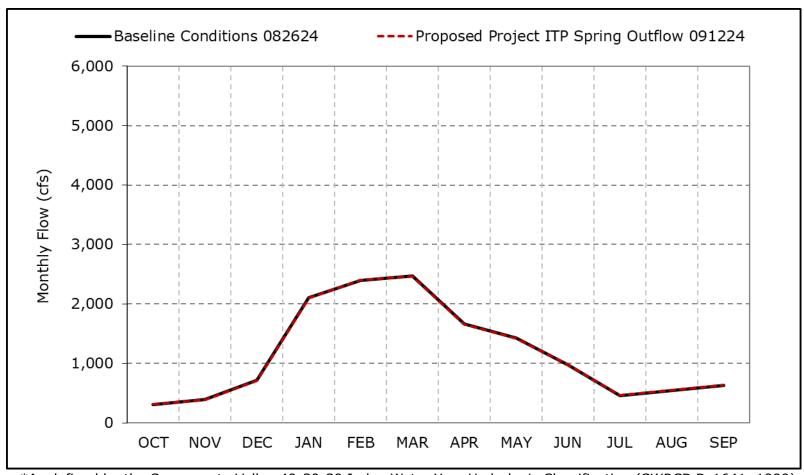


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7b. Mokelumne River below Cosumnes, Wet Year Average Flow

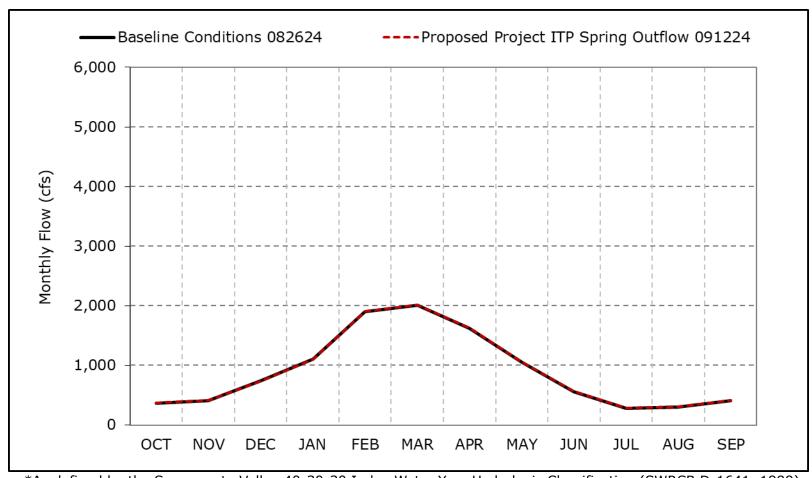


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7c. Mokelumne River below Cosumnes, Above Normal Year Average Flow

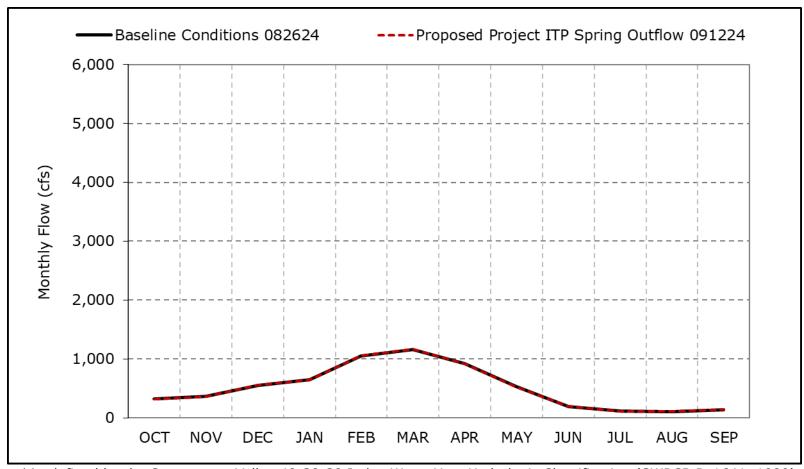


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7d. Mokelumne River below Cosumnes, Below Normal Year Average Flow

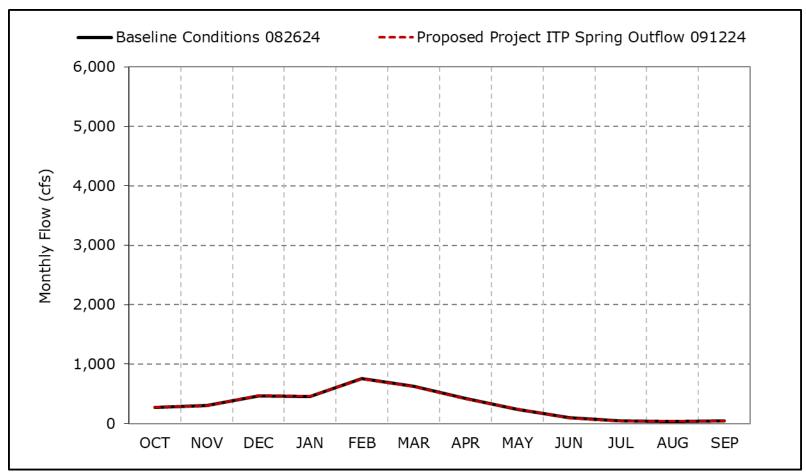


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7e. Mokelumne River below Cosumnes, Dry Year Average Flow

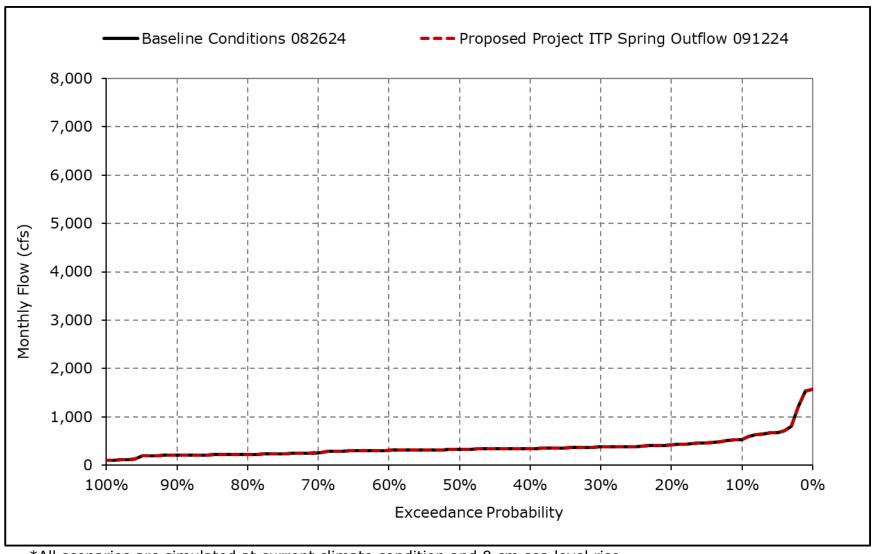


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7f. Mokelumne River below Cosumnes, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

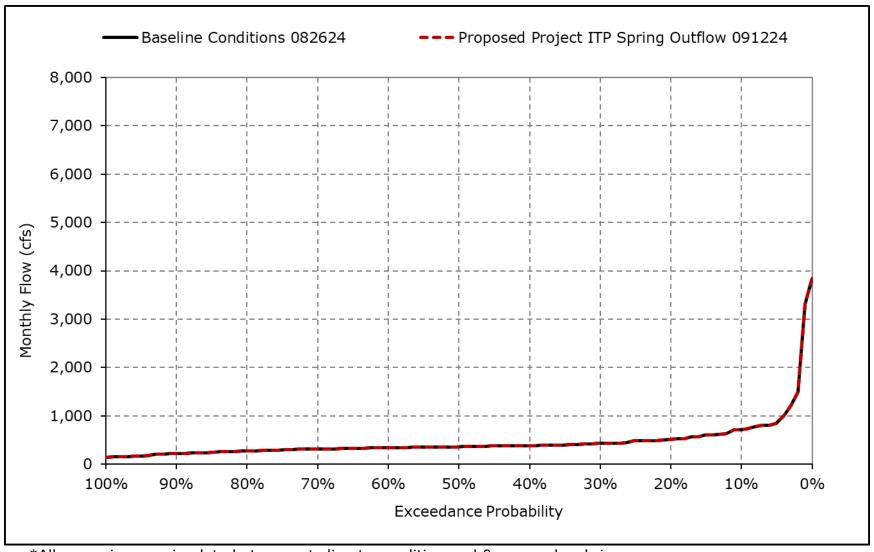

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7g. Mokelumne River below Cosumnes, October

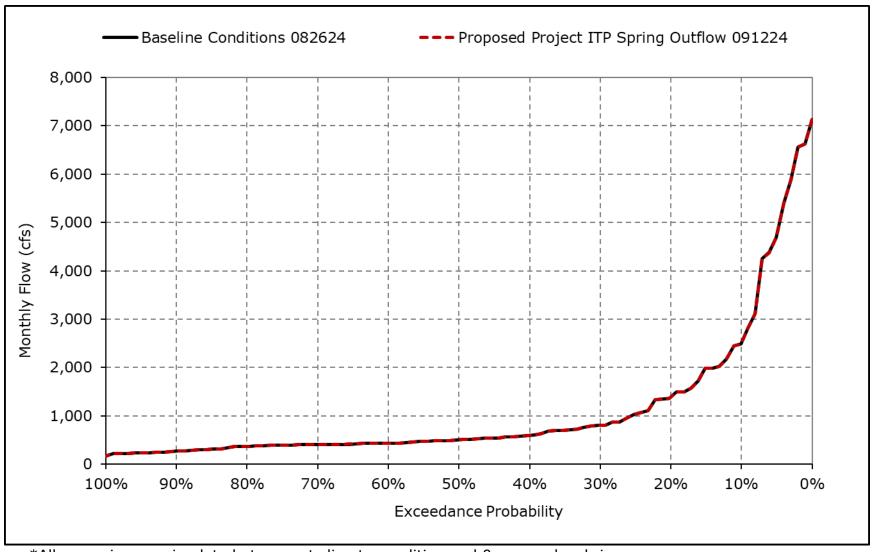

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7h. Mokelumne River below Cosumnes, November

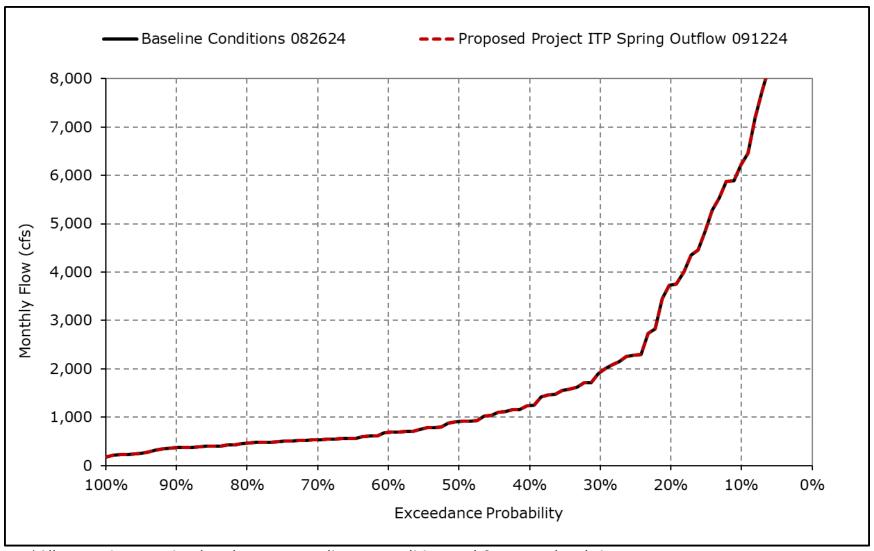

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7i. Mokelumne River below Cosumnes, December

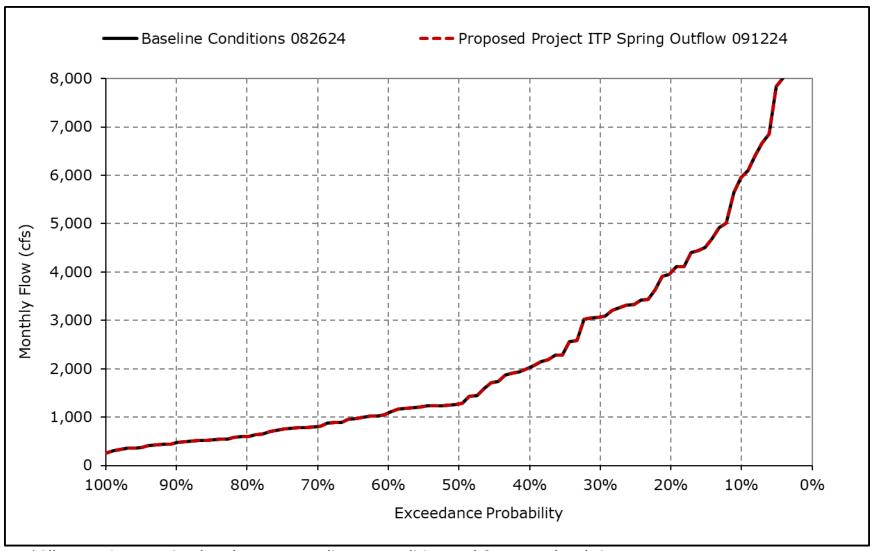

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7j. Mokelumne River below Cosumnes, January

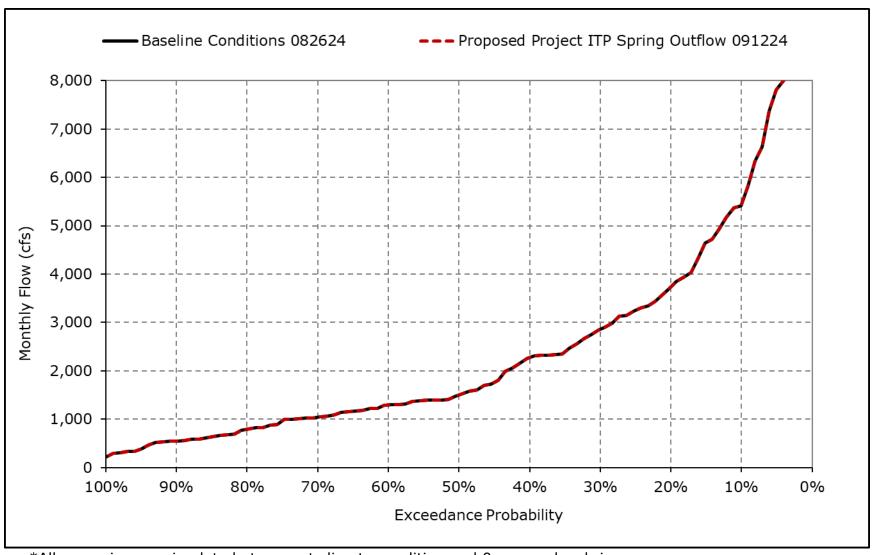

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7k. Mokelumne River below Cosumnes, February

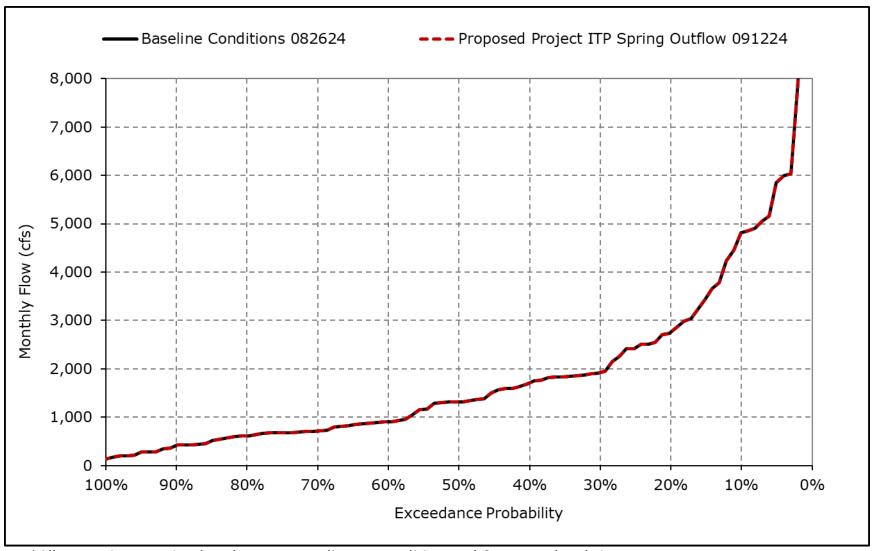

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7l. Mokelumne River below Cosumnes, March

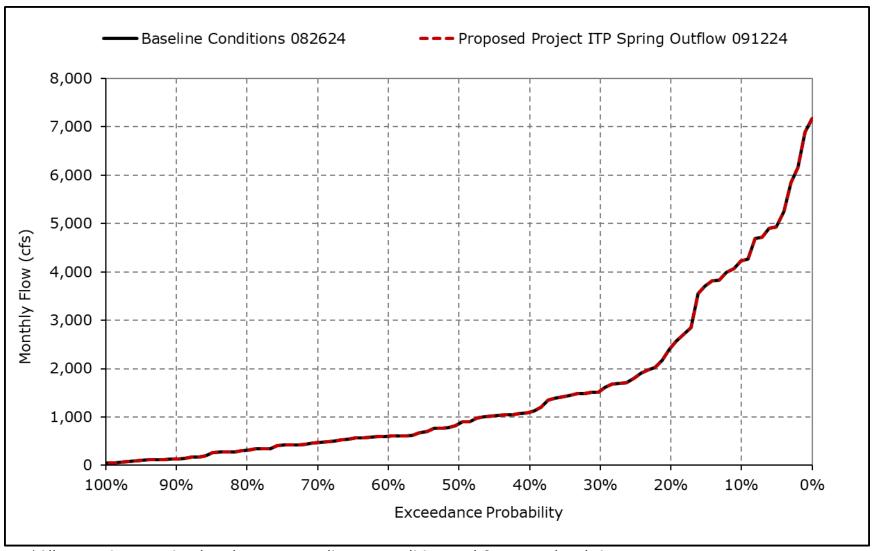

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7m. Mokelumne River below Cosumnes, April

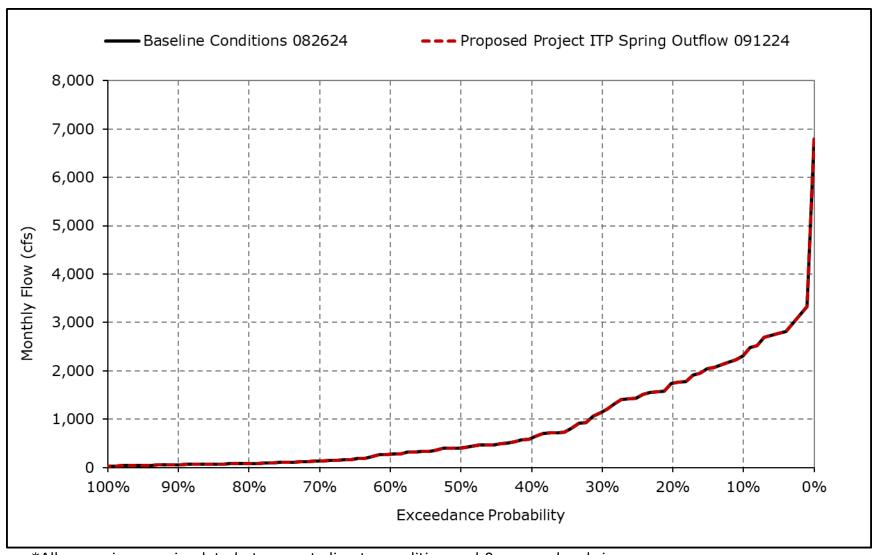

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7n. Mokelumne River below Cosumnes, May

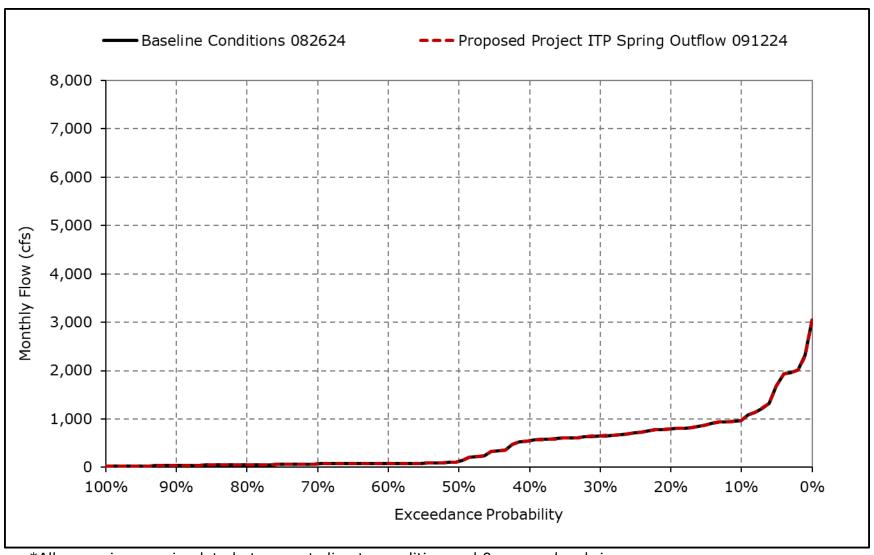

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7o. Mokelumne River below Cosumnes, June

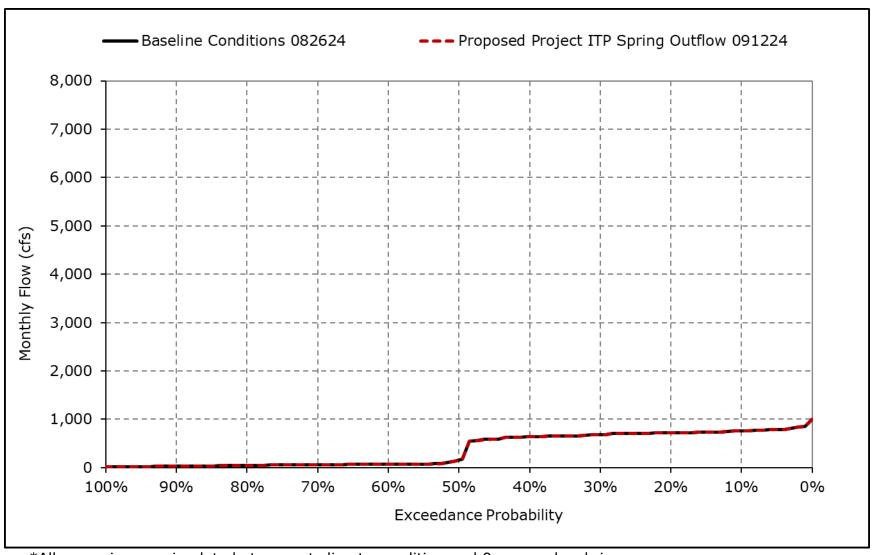

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7p. Mokelumne River below Cosumnes, July

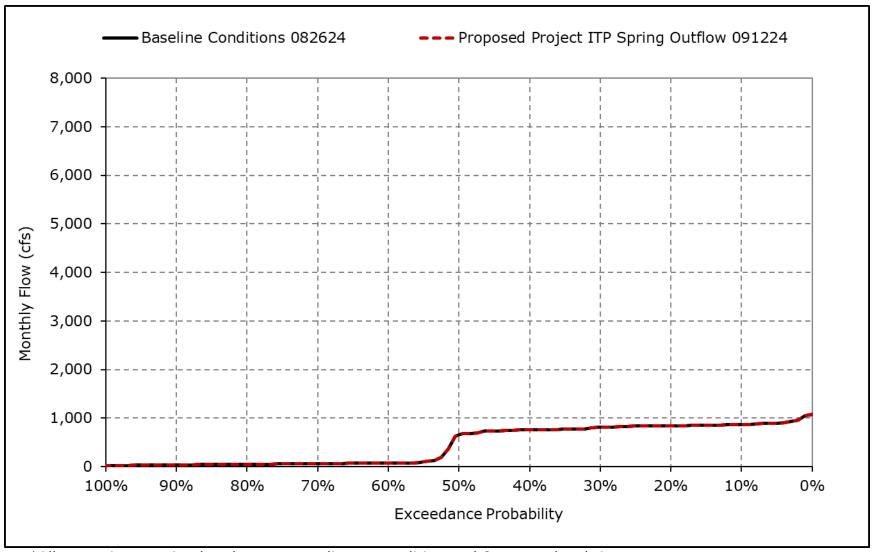

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7q. Mokelumne River below Cosumnes, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-7r. Mokelumne River below Cosumnes, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-3-8-1a. Old and Middle River Flow, Baseline Conditions 082624, Monthly Flow (combined flows)(cfs)

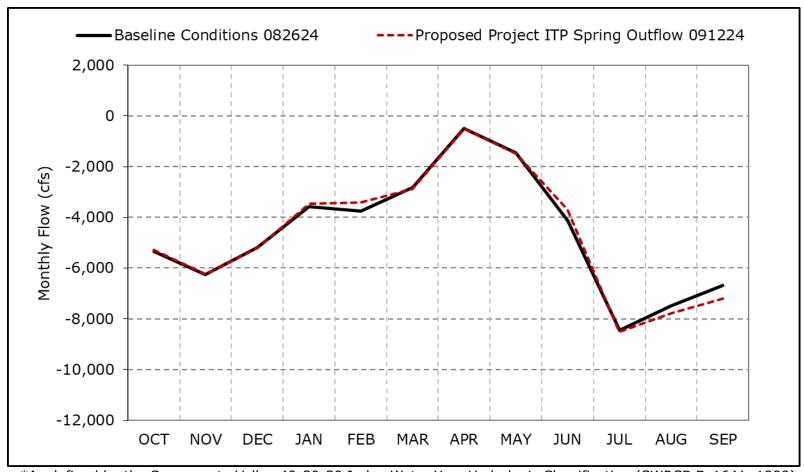
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-2,274	-1,649	-2,406	-2,131	-1,898	-1,346	1,295	378	-1,804	-2,912	-2,356	-3,403
20% Exceedance	-3,666	-3,268	-3,217	-3,645	-4,292	-2,829	244	-449	-3,630	-5,028	-3,284	-4,197
30% Exceedance	-4,046	-3,960	-4,910	-3,645	-4,329	-3,370	-268	-976	-4,388	-7,261	-4,497	-5,031
40% Exceedance	-4,731	-5,828	-5,290	-3,645	-4,329	-3,409	-526	-1,386	-4,544	-8,783	-7,286	-5,664
50% Exceedance	-5,332	-6,717	-5,290	-4,516	-4,464	-3,413	-754	-1,595	-4,839	-9,595	-9,097	-6,322
60% Exceedance	-5,847	-8,370	-5,290	-4,516	-4,464	-3,425	-1,059	-1,728	-5,000	-10,065	-9,607	-7,669
70% Exceedance	-6,348	-8,874	-5,290	-4,516	-4,464	-3,442	-1,262	-1,998	-5,000	-10,775	-10,252	-8,624
80% Exceedance	-7,357	-9,131	-6,062	-4,608	-4,483	-4,191	-1,413	-2,405	-5,000	-11,108	-10,585	-9,394
90% Exceedance	-8,501	-9,492	-8,156	-5,000	-4,963	-4,196	-1,873	-3,587	-5,000	-11,401	-11,155	-9,911
Full Simulation Period Average ^a	-5,339	-6,250	-5,185	-3,569	-3,743	-2,825	-493	-1,445	-4,138	-8,442	-7,480	-6,690
Wet Water Years (32%)	-6,285	-7,266	-5,452	-2,870	-2,540	-1,398	-677	-2,092	-3,976	-9,344	-9,910	-8,390
Above Normal Water Years (9%)	-4,689	-6,826	-6,718	-4,183	-4,331	-3,391	-735	-2,338	-4,820	-9,926	-10,090	-6,690
Below Normal Water Years (20%)	-5,629	-6,728	-5,134	-4,167	-4,301	-3,666	516	-585	-4,842	-10,771	-9,792	-8,294
Dry Water Years (21%)	-5,146	-6,261	-5,156	-4,097	-4,421	-3,902	-767	-1,020	-4,859	-8,634	-4,813	-5,392
Critical Water Years (18%)	-3,887	-3,609	-4,032	-3,222	-4,177	-2,887	-845	-1,299	-2,459	-3,286	-2,396	-3,400

Table 4L-3-8-1b. Old and Middle River Flow, Proposed Project ITP Spring Outflow 091224, Monthly Flow (combined flows)(cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-2,517	-1,692	-2,515	-2,486	-2,387	-1,329	1,295	371	-1,978	-3,060	-2,282	-3,472
20% Exceedance	-3,605	-3,270	-3,386	-3,318	-3,611	-3,161	240	-449	-3,562	-5,149	-3,333	-4,206
30% Exceedance	-4,027	-3,986	-5,137	-3,569	-3,792	-3,411	-270	-977	-4,069	-7,441	-4,821	-5,072
40% Exceedance	-4,461	-5,675	-5,290	-3,645	-3,897	-3,415	-585	-1,449	-4,115	-8,736	-7,424	-5,979
50% Exceedance	-5,430	-6,806	-5,290	-4,042	-3,963	-3,487	-780	-1,636	-4,148	-9,493	-9,477	-7,101
60% Exceedance	-5,837	-8,372	-5,290	-4,235	-4,058	-3,562	-1,037	-1,792	-4,262	-10,321	-10,142	-8,488
70% Exceedance	-6,327	-8,875	-5,290	-4,385	-4,265	-3,817	-1,268	-2,015	-4,310	-10,914	-10,827	-9,733
80% Exceedance	-6,872	-9,132	-6,154	-4,439	-4,357	-3,859	-1,405	-2,379	-4,400	-11,231	-11,070	-10,421
90% Exceedance	-8,446	-9,493	-8,434	-4,700	-4,379	-4,237	-1,759	-3,857	-4,400	-11,434	-11,481	-10,875
Full Simulation Period Average ^a	-5,280	-6,239	-5,203	-3,462	-3,406	-2,888	-500	-1,495	-3,694	-8,514	-7,780	-7,211
Wet Water Years (32%)	-6,186	-7,216	-5,485	-2,761	-2,467	-1,816	-692	-2,175	-3,430	-9,425	-10,307	-9,740
Above Normal Water Years (9%)	-4,535	-6,812	-6,858	-4,010	-3,946	-3,525	-718	-2,445	-4,119	-10,278	-10,656	-7,957
Below Normal Water Years (20%)	-5,443	-6,759	-5,150	-3,995	-3,869	-3,580	495	-647	-4,296	-10,704	-10,262	-8,296
Dry Water Years (21%)	-5,263	-6,288	-5,039	-4,041	-3,862	-3,687	-767	-1,027	-4,380	-8,783	-4,929	-5,280
Critical Water Years (18%)	-3,881	-3,581	-4,125	-3,167	-3,762	-2,774	-843	-1,299	-2,480	-3,266	-2,418	-3,391

Table 4L-3-8-1c. Old and Middle River Flow, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly Flow (combined flows)(cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-243	-43	-109	-355	-489	17	0	-7	-174	-148	73	-69
20% Exceedance	61	-2	-168	327	680	-332	-4	-1	67	-121	-49	-10
30% Exceedance	19	-26	-227	76	537	-41	-2	-1	319	-181	-325	-41
40% Exceedance	271	154	0	0	432	-6	-59	-63	429	47	-138	-315
50% Exceedance	-98	-89	0	474	501	-74	-26	-41	692	101	-380	-779
60% Exceedance	10	-1	0	281	406	-137	22	-64	738	-256	-534	-819
70% Exceedance	21	-1	0	131	199	-375	-7	-16	690	-139	-575	-1,109
80% Exceedance	486	-1	-92	168	126	332	8	27	600	-123	-485	-1,027
90% Exceedance	54	-1	-278	300	584	-41	114	-270	600	-33	-326	-963
Full Simulation Period Average ^a	59	10	-18	106	337	-63	-7	-50	444	-72	-300	-522
Wet Water Years (32%)	99	50	-33	109	73	-418	-15	-83	546	-82	-397	-1,350
Above Normal Water Years (9%)	155	14	-140	173	385	-133	17	-107	701	-352	-565	-1,268
Below Normal Water Years (20%)	186	-30	-16	172	432	85	-21	-62	546	67	-470	-2
Dry Water Years (21%)	-117	-28	117	56	559	215	0	-8	479	-149	-116	112
Critical Water Years (18%)	6	28	-92	55	415	113	2	0	-21	20	-22	9

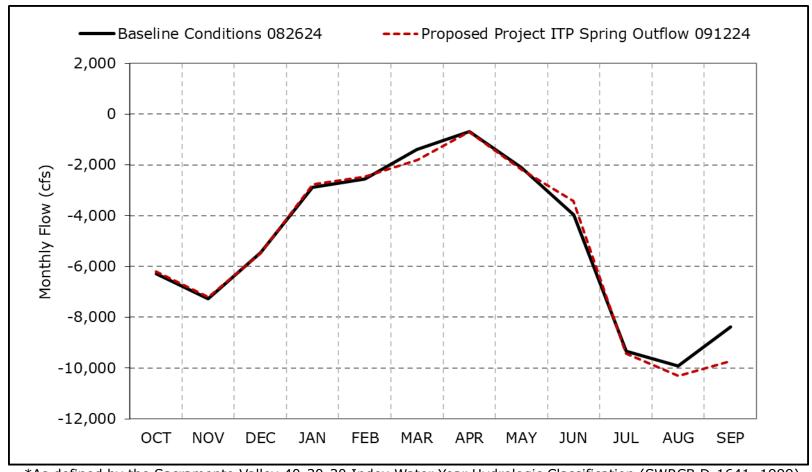

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*} Water Year Types results are displayed with water year - year type sorting.

Figure 4L-3-8a. Old and Middle River Flow, Long-Term Average Flow

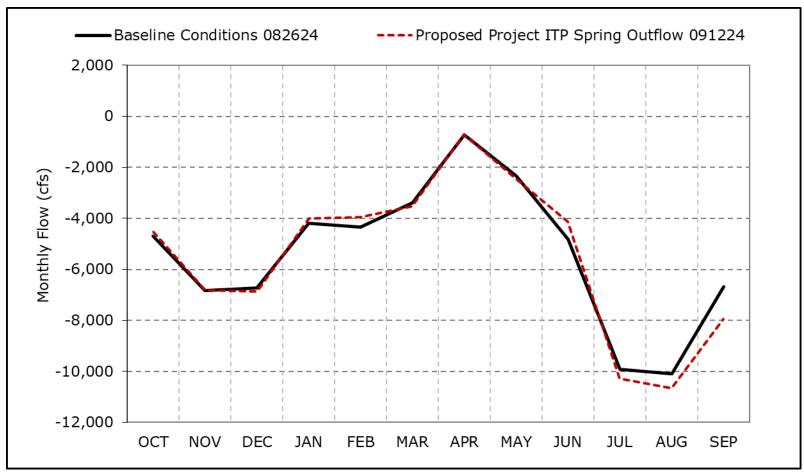


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8b. Old and Middle River Flow, Wet Year Average Flow

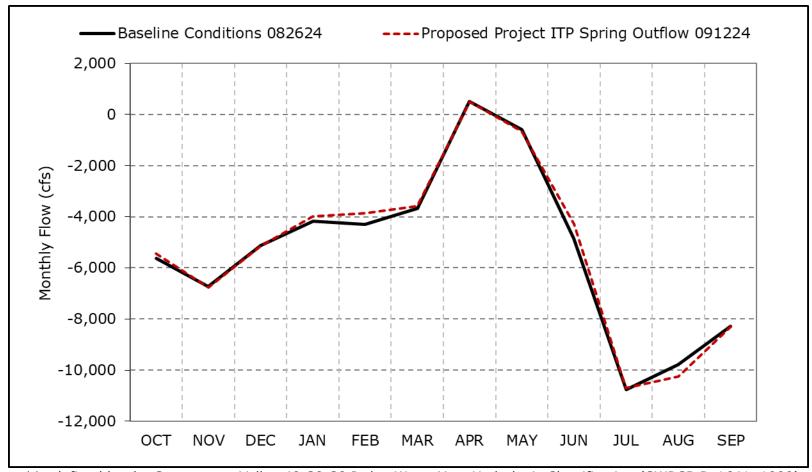


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8c. Old and Middle River Flow, Above Normal Year Average Flow

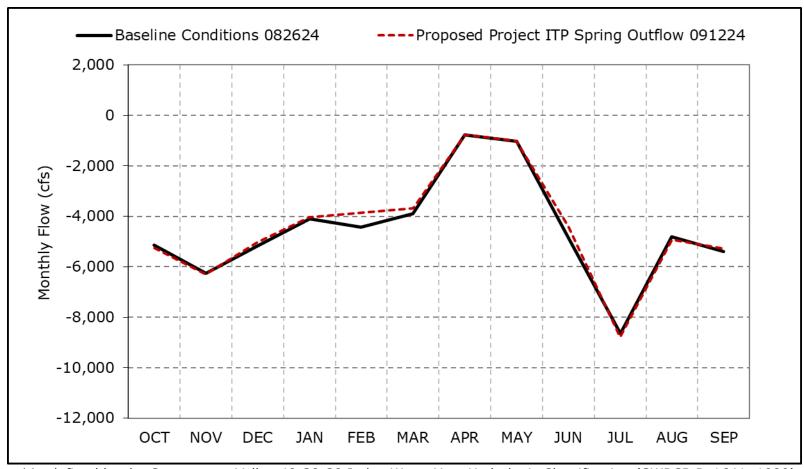


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8d. Old and Middle River Flow, Below Normal Year Average Flow

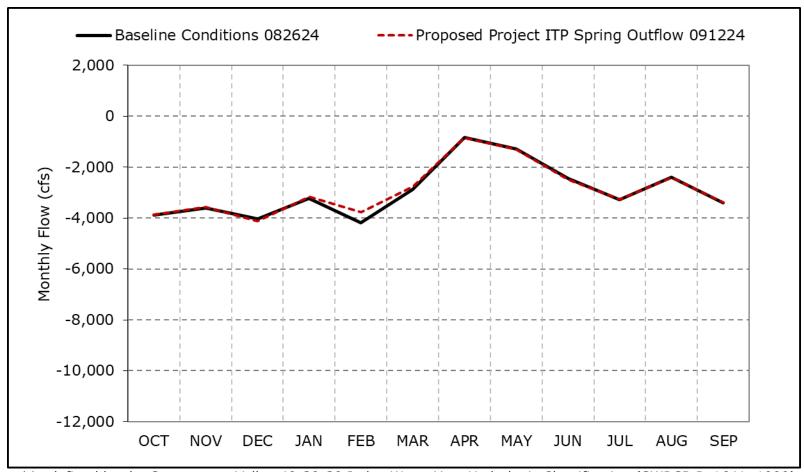


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8e. Old and Middle River Flow, Dry Year Average Flow

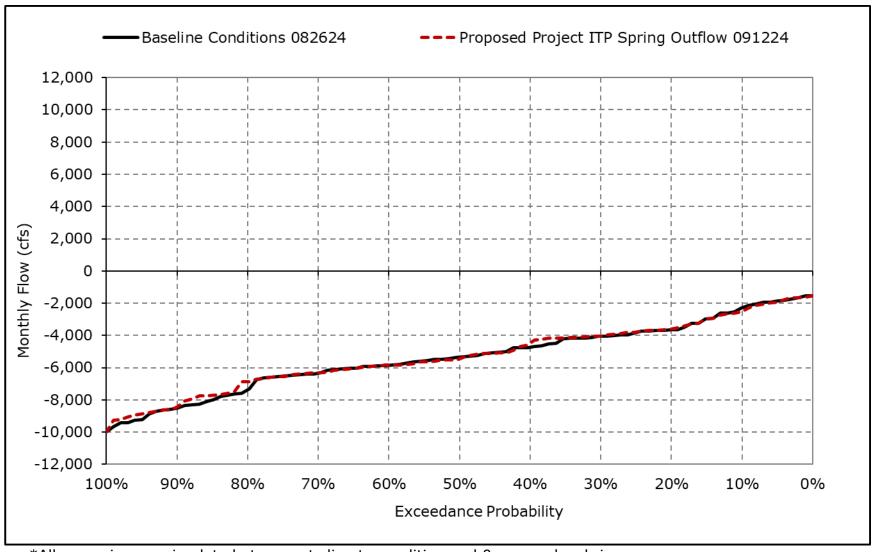


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8f. Old and Middle River Flow, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

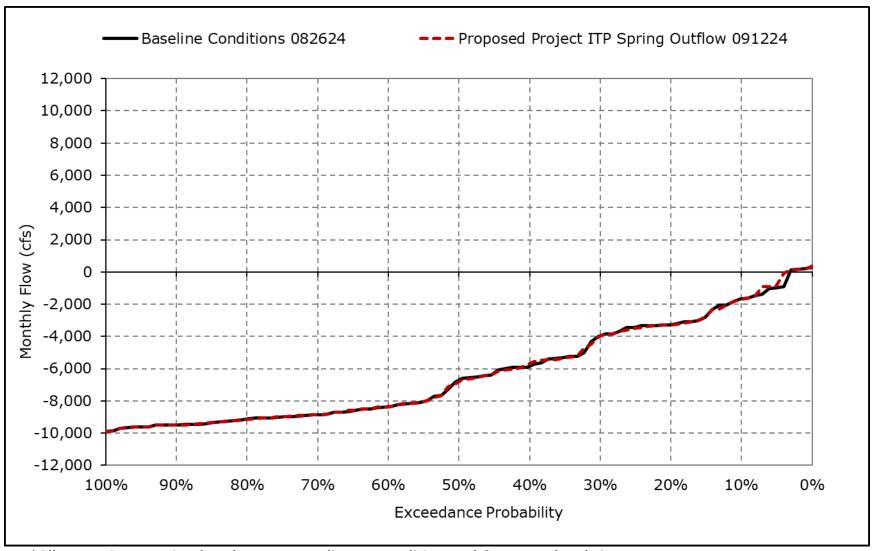

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8g. Old and Middle River Flow, October

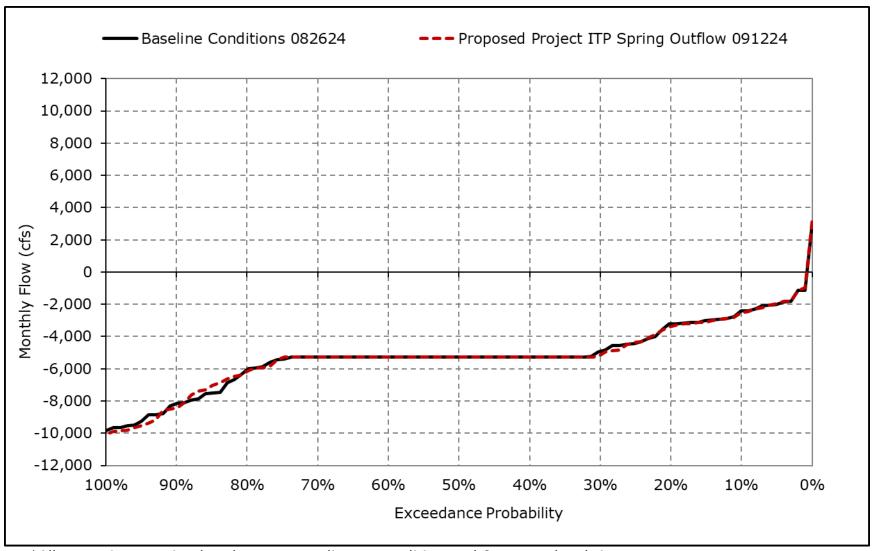

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8h. Old and Middle River Flow, November

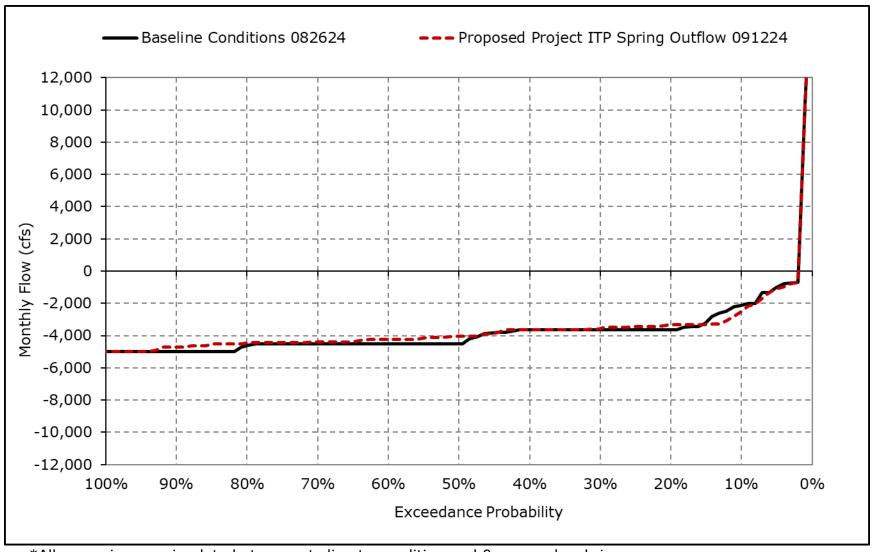

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8i. Old and Middle River Flow, December

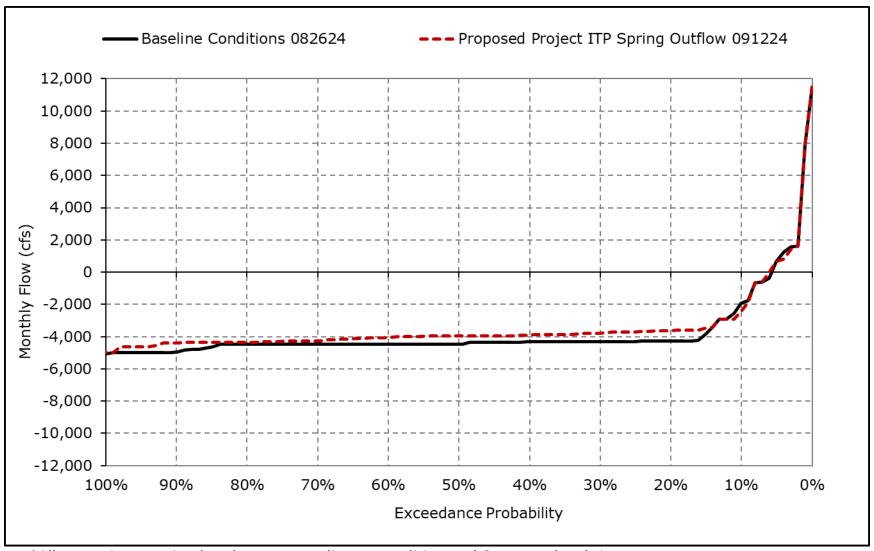

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8j. Old and Middle River Flow, January

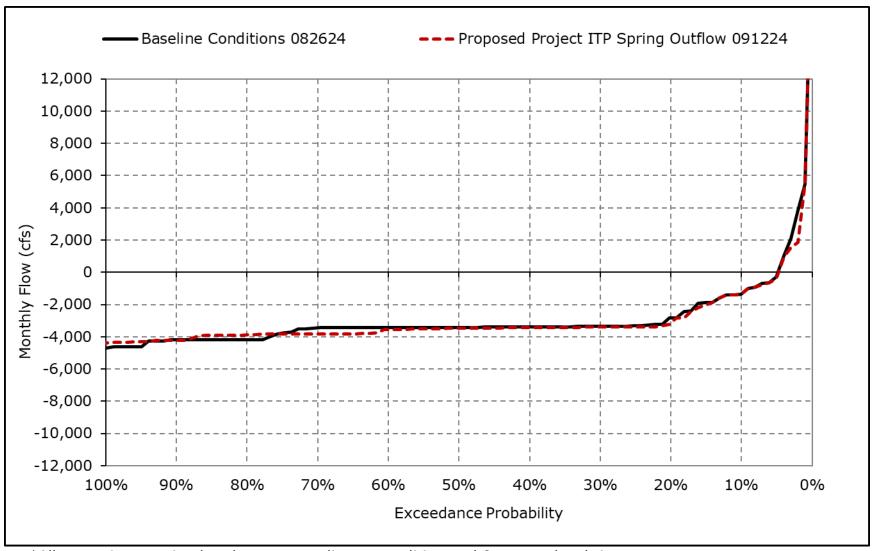

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8k. Old and Middle River Flow, February

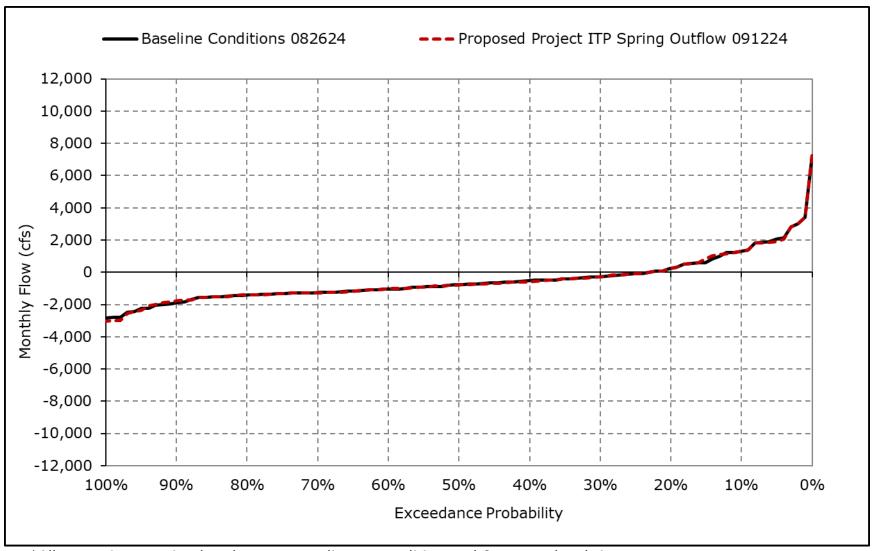

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8l. Old and Middle River Flow, March

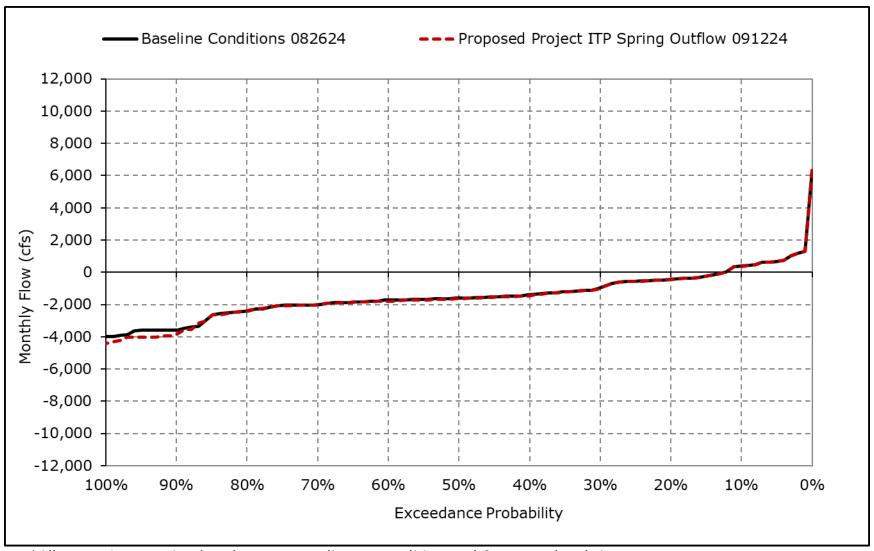

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8m. Old and Middle River Flow, April

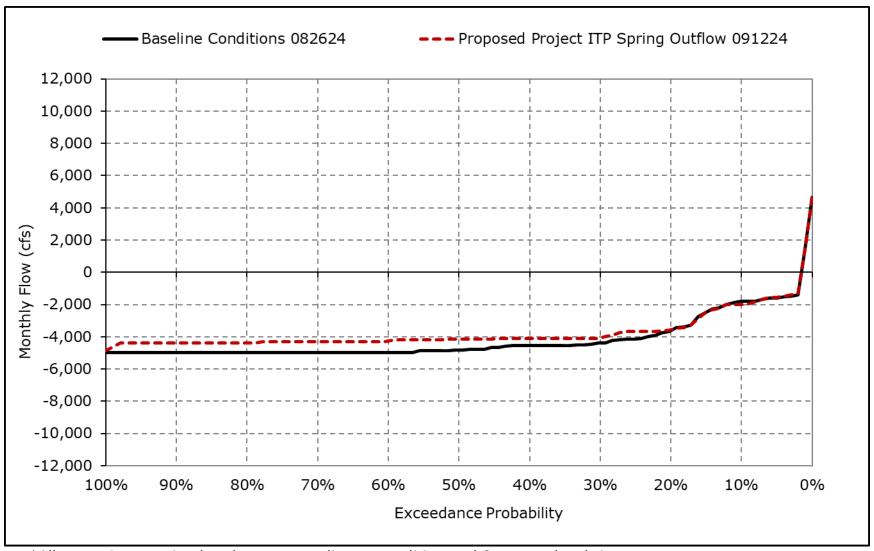

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8n. Old and Middle River Flow, May

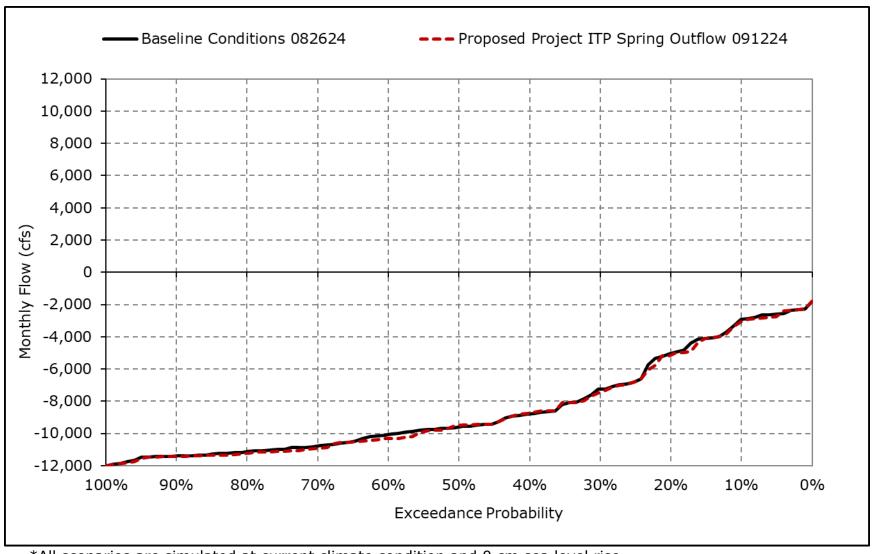

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8o. Old and Middle River Flow, June

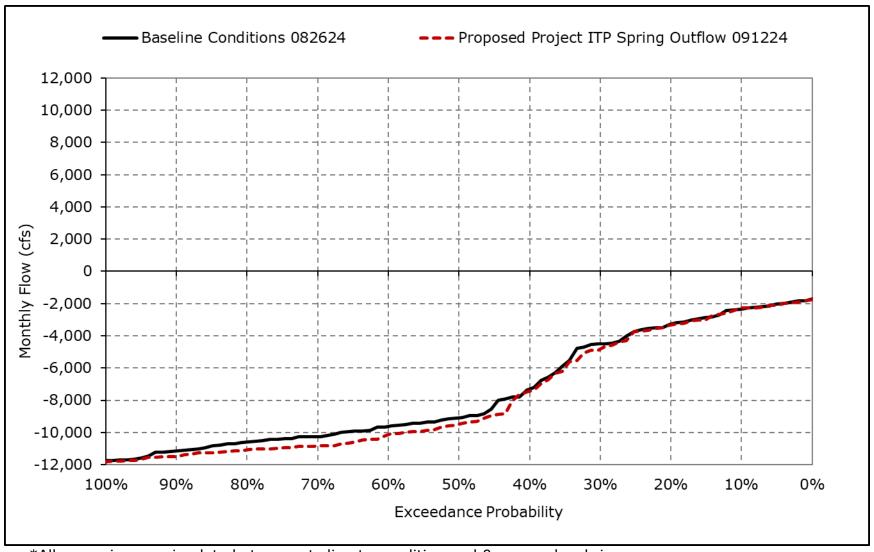

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8p. Old and Middle River Flow, July

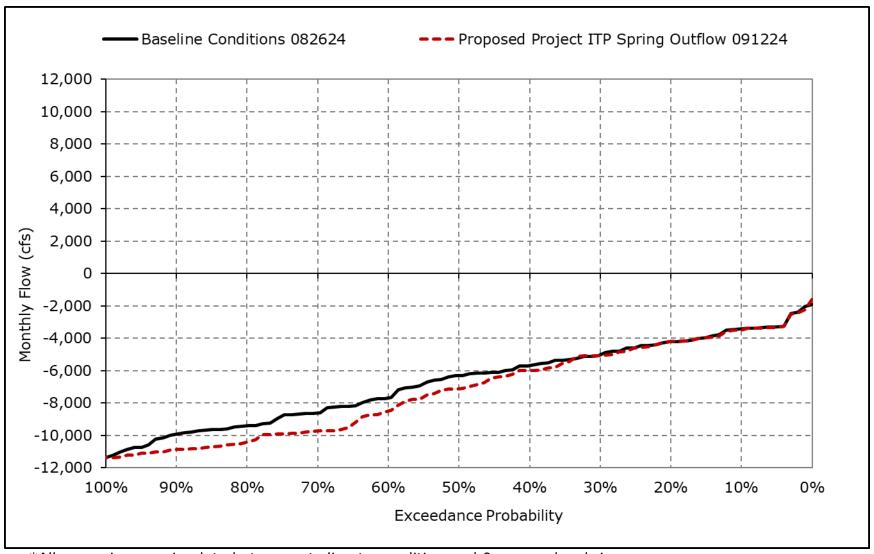

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8q. Old and Middle River Flow, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-8r. Old and Middle River Flow, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-3-9-1a. Qwest, Baseline Conditions 082624, Monthly Flow (cfs)

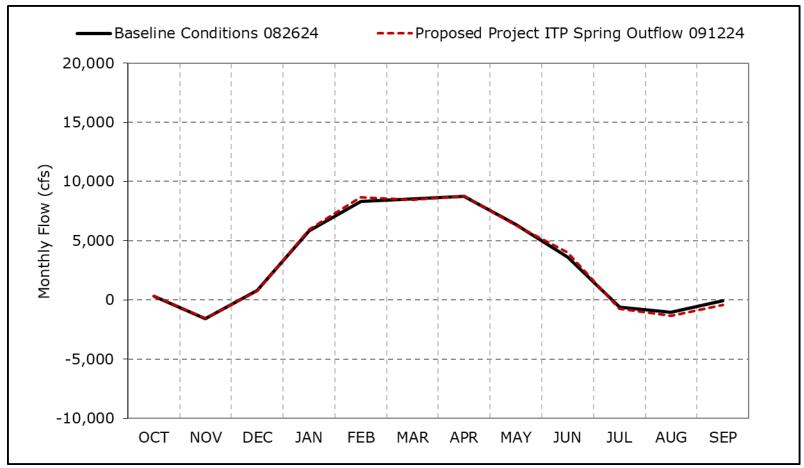
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	1,552	765	7,513	18,028	21,137	20,930	16,991	14,774	10,980	1,853	1,551	2,062
20% Exceedance	1,118	74	2,702	11,876	13,311	14,256	13,134	8,692	5,420	1,448	1,183	918
30% Exceedance	889	-163	1,105	4,851	10,270	9,733	10,669	6,713	3,454	478	813	588
40% Exceedance	716	-1,299	496	3,390	6,132	7,195	8,280	5,507	2,228	-219	73	128
50% Exceedance	491	-1,717	-207	1,813	4,003	4,293	6,333	4,501	1,872	-1,102	-957	-140
60% Exceedance	186	-2,628	-903	1,037	2,203	2,671	5,148	3,657	1,225	-1,776	-2,246	-361
70% Exceedance	-154	-3,253	-2,045	-147	1,321	2,119	3,655	2,372	749	-2,590	-2,563	-653
80% Exceedance	-578	-3,674	-3,167	-1,134	130	1,466	2,717	2,050	567	-3,049	-3,066	-1,165
90% Exceedance	-1,549	-4,058	-5,164	-1,938	-646	402	2,237	1,689	341	-3,478	-3,823	-2,013
Full Simulation Period Average ^a	287	-1,578	777	5,855	8,319	8,512	8,771	6,362	3,631	-612	-1,050	-53
Wet Water Years (32%)	-64	-1,562	4,414	15,695	18,943	18,821	16,008	11,654	7,977	1,105	-1,412	814
Above Normal Water Years (9%)	738	-2,403	-1,569	6,198	8,536	8,887	8,330	5,510	3,065	-1,353	-2,547	1,395
Below Normal Water Years (20%)	216	-1,947	-802	1,793	5,318	5,512	8,028	5,776	1,584	-2,739	-3,151	-2,093
Dry Water Years (21%)	437	-1,925	-1,113	-316	1,685	1,801	3,873	3,084	682	-2,382	78	-508
Critical Water Years (18%)	590	-378	-558	-97	396	1,159	2,667	1,854	1,903	1,133	1,362	480

Table 4L-3-9-1b. Qwest, Proposed Project ITP Spring Outflow 091224, Monthly Flow (cfs)

				-					-			
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	1,656	785	7,541	18,042	21,002	20,406	16,962	14,276	11,345	1,833	1,544	942
20% Exceedance	1,104	43	2,696	11,978	13,403	14,147	13,256	8,696	6,053	1,370	1,074	540
30% Exceedance	954	-314	1,052	4,944	10,384	9,824	10,735	6,682	4,023	405	345	73
40% Exceedance	758	-1,270	410	3,633	6,504	7,045	8,316	5,451	2,641	-366	-449	-97
50% Exceedance	537	-1,732	-204	2,077	4,554	4,320	6,336	4,494	1,969	-1,217	-1,314	-340
60% Exceedance	324	-2,556	-1,215	847	2,939	2,809	5,119	3,656	1,620	-1,962	-2,654	-582
70% Exceedance	-70	-3,251	-2,104	-194	1,713	2,229	3,690	2,369	1,212	-2,868	-3,181	-998
80% Exceedance	-537	-3,676	-3,173	-1,014	769	1,551	2,720	1,999	962	-3,189	-3,469	-1,368
90% Exceedance	-1,543	-4,114	-4,869	-1,867	-330	475	2,244	1,688	807	-3,500	-4,098	-2,084
Full Simulation Period Average ^a	357	-1,568	750	5,967	8,675	8,435	8,761	6,297	4,043	-725	-1,361	-422
Wet Water Years (32%)	15	-1,508	4,364	15,812	19,010	18,358	15,987	11,561	8,551	1,007	-1,824	-249
Above Normal Water Years (9%)	924	-2,395	-1,715	6,384	8,946	8,705	8,341	5,389	3,744	-1,770	-3,199	772
Below Normal Water Years (20%)	374	-1,991	-806	1,967	5,780	5,613	8,004	5,668	2,056	-2,804	-3,498	-2,100
Dry Water Years (21%)	405	-1,950	-999	-255	2,272	2,028	3,872	3,069	1,042	-2,539	-125	-381
Critical Water Years (18%)	605	-345	-672	-40	854	1,271	2,666	1,856	1,886	1,146	1,312	490

Table 4L-3-9-1c. Qwest, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	105	20	28	14	-135	-523	-29	-498	365	-20	-7	-1,119
20% Exceedance	-14	-31	-6	102	92	-109	122	4	633	-79	-109	-378
30% Exceedance	65	-151	-54	93	114	91	65	-32	569	-73	-468	-515
40% Exceedance	42	29	-86	243	372	-150	35	-56	413	-147	-522	-226
50% Exceedance	45	-14	4	263	552	27	3	-7	96	-115	-357	-200
60% Exceedance	138	72	-312	-190	737	138	-29	-1	395	-187	-408	-221
70% Exceedance	84	2	-58	-47	391	109	35	-3	463	-279	-618	-345
80% Exceedance	41	-2	-5	119	639	85	2	-51	395	-141	-403	-203
90% Exceedance	6	-55	295	71	316	73	7	-1	466	-22	-275	-71
Full Simulation Period Average ^a	69	10	-27	112	357	-77	-11	-65	412	-112	-312	-369
Wet Water Years (32%)	79	55	-50	117	68	-463	-20	-93	575	-98	-412	-1,063
Above Normal Water Years (9%)	186	8	-146	186	410	-182	11	-120	679	-417	-653	-623
Below Normal Water Years (20%)	158	-44	-3	174	463	100	-24	-108	472	-65	-347	-7
Dry Water Years (21%)	-32	-25	113	61	587	227	-1	-15	360	-157	-203	127
Critical Water Years (18%)	14	33	-113	57	458	111	-2	2	-17	13	-50	10

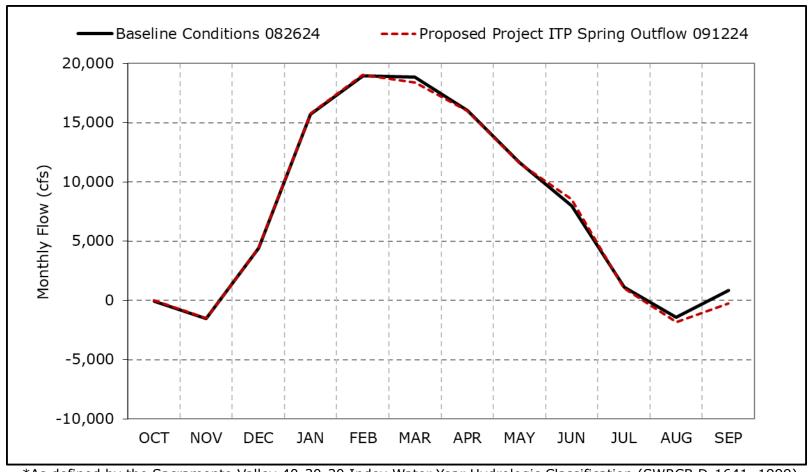

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*} Water Year Types results are displayed with water year - year type sorting.

Figure 4L-3-9a. Qwest, Long-Term Average Flow

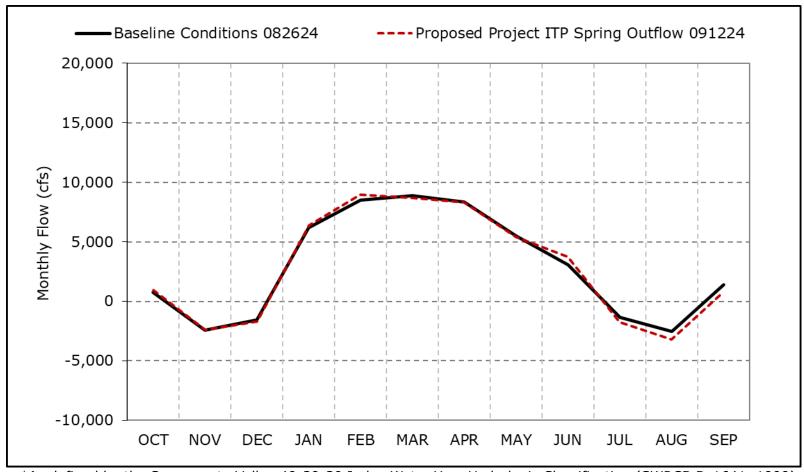


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9b. Qwest, Wet Year Average Flow

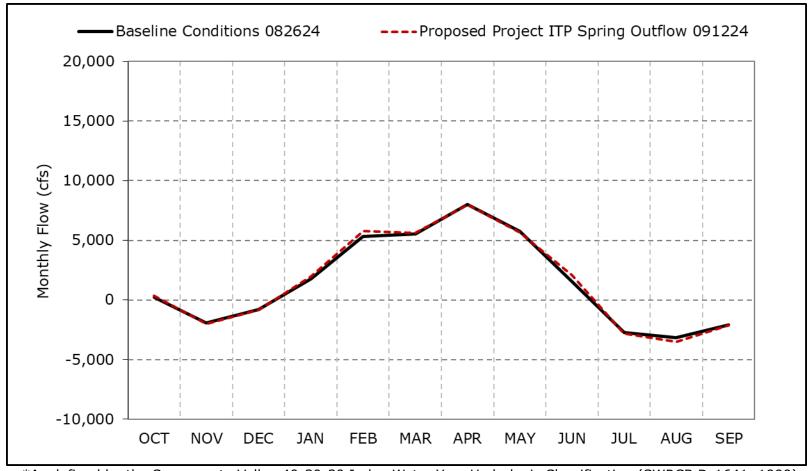


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9c. Qwest, Above Normal Year Average Flow

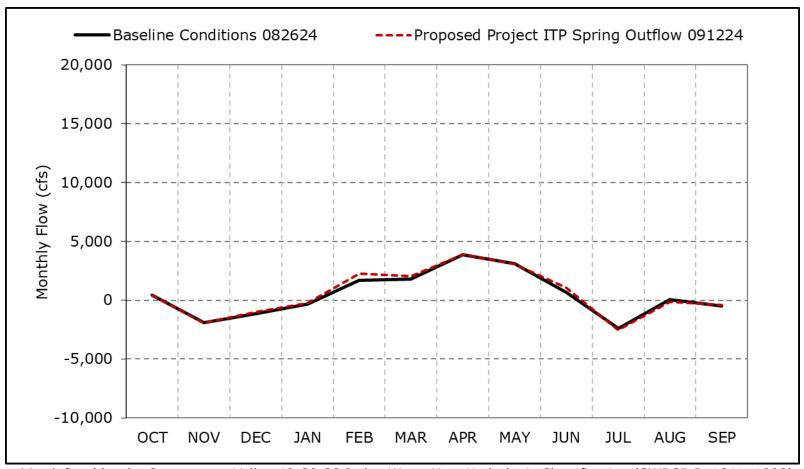


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9d. Qwest, Below Normal Year Average Flow

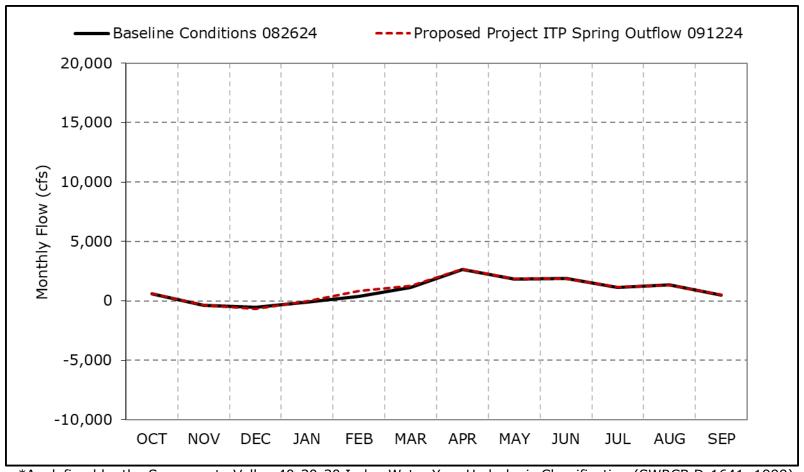


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9e. Qwest, Dry Year Average Flow

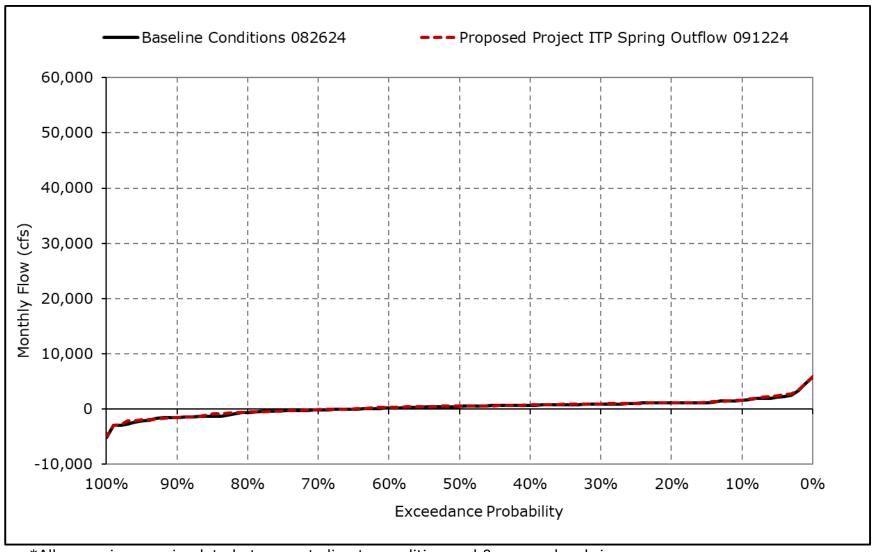


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9f. Qwest, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

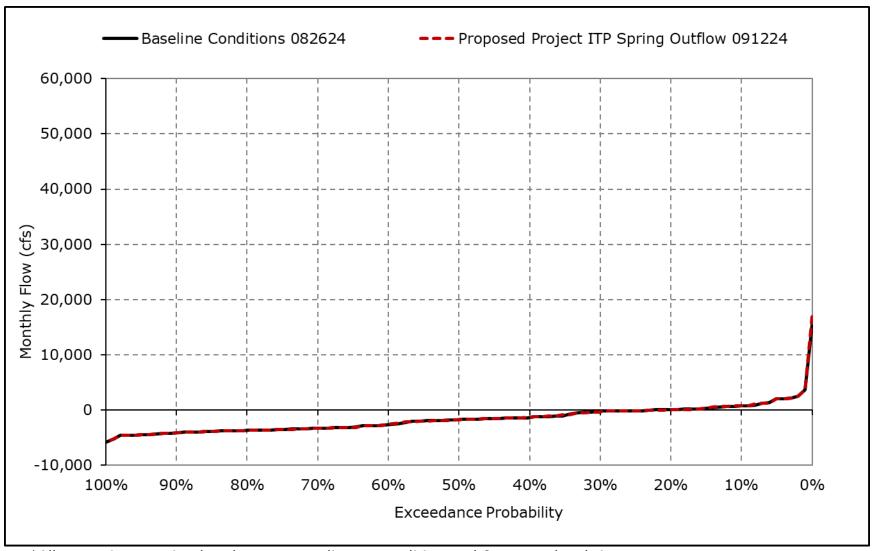

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9g. Qwest, October

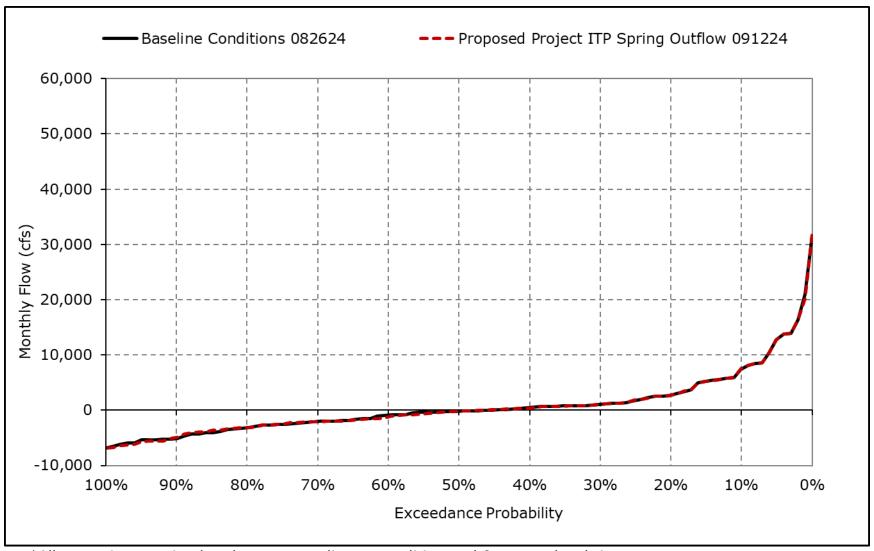

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9h. Qwest, November

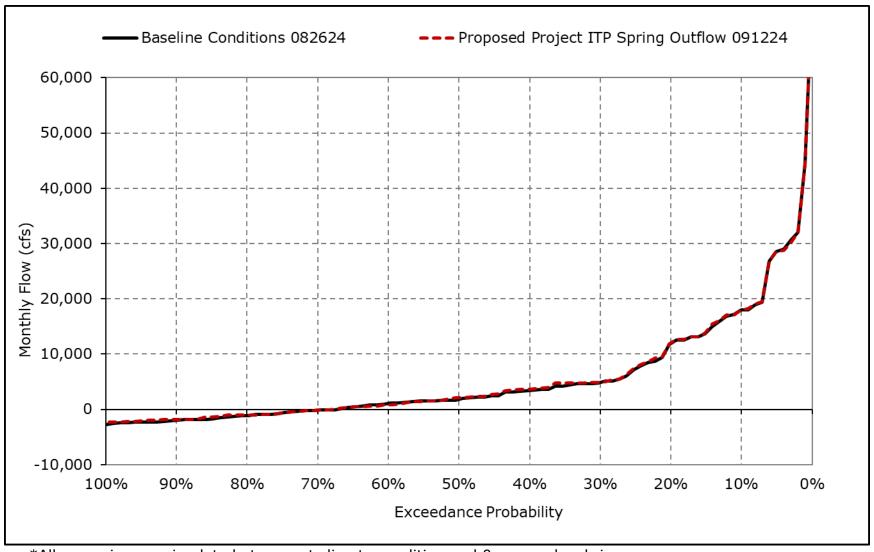

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9i. Qwest, December

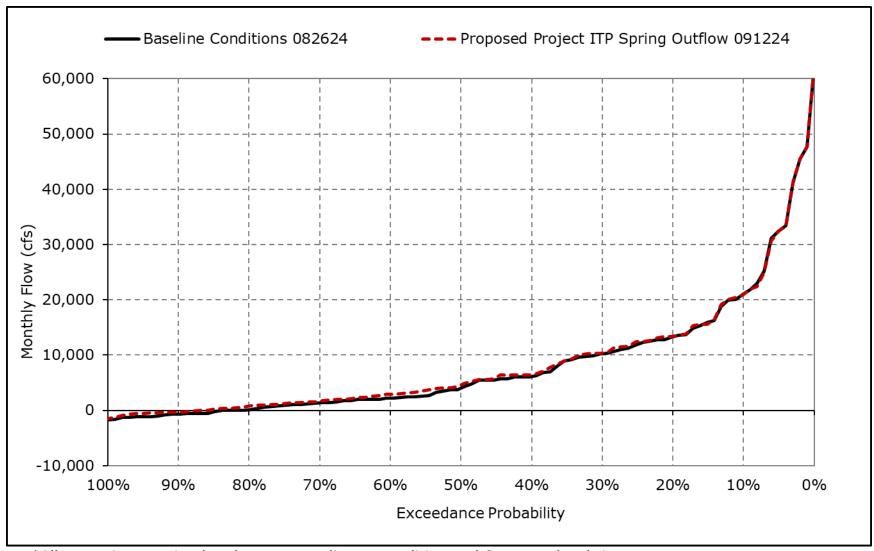

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9j. Qwest, January

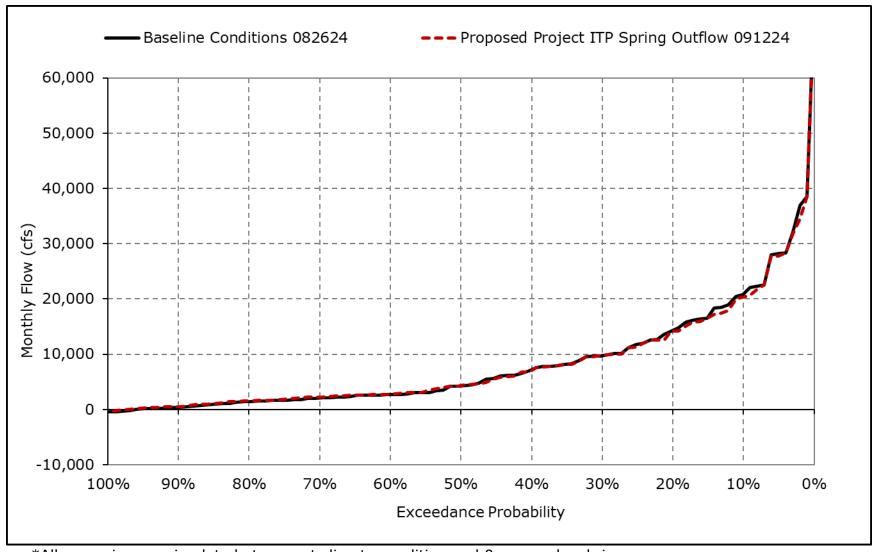

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9k. Qwest, February

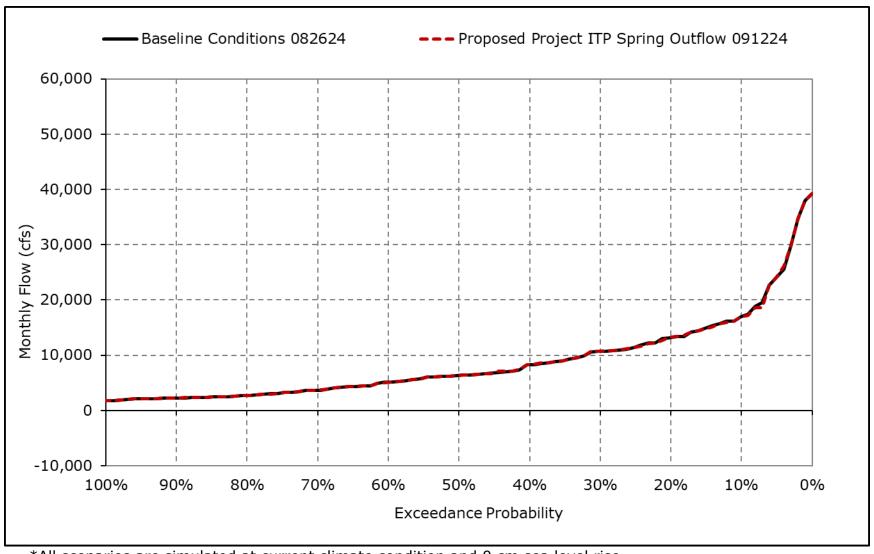

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9I. Qwest, March

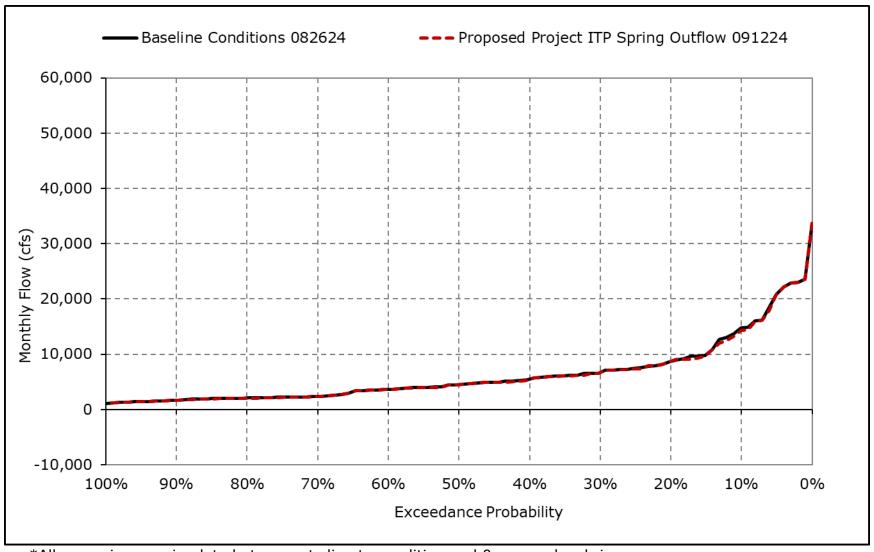

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9m. Qwest, April

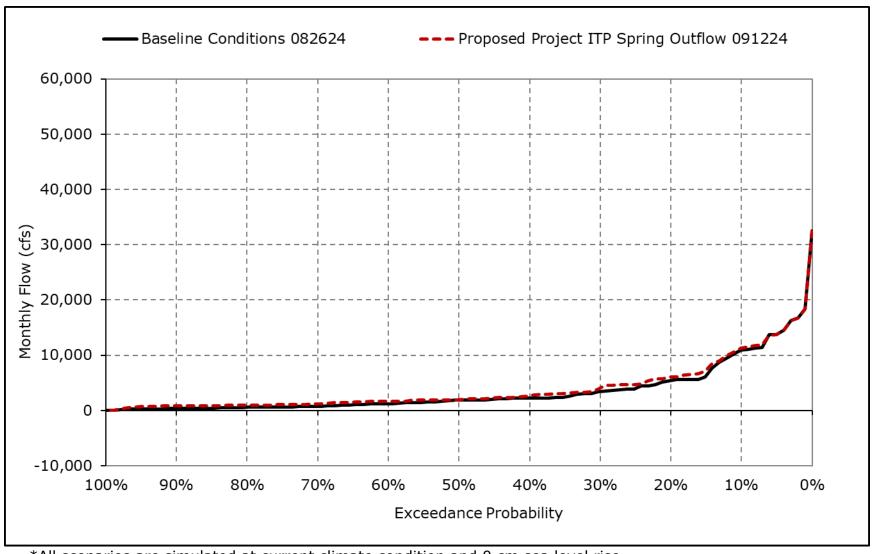

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9n. Qwest, May

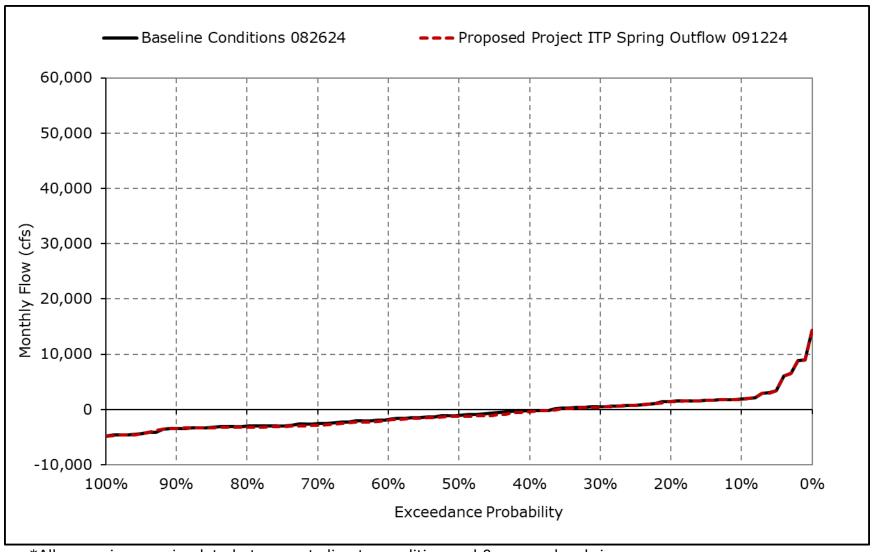

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9o. Qwest, June

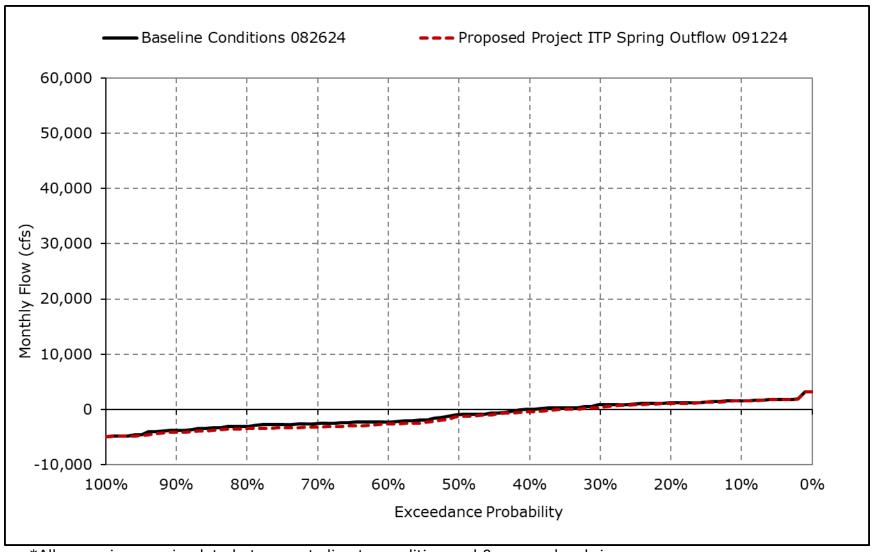

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9p. Qwest, July

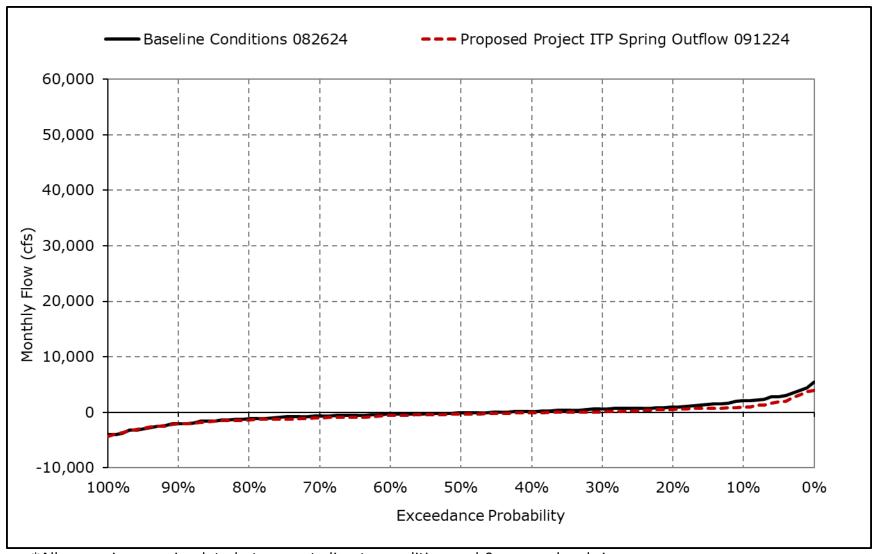

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9q. Qwest, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-9r. Qwest, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4L-3-10-1a. Delta Outflow, Baseline Conditions 082624, Monthly Outflow (cfs)

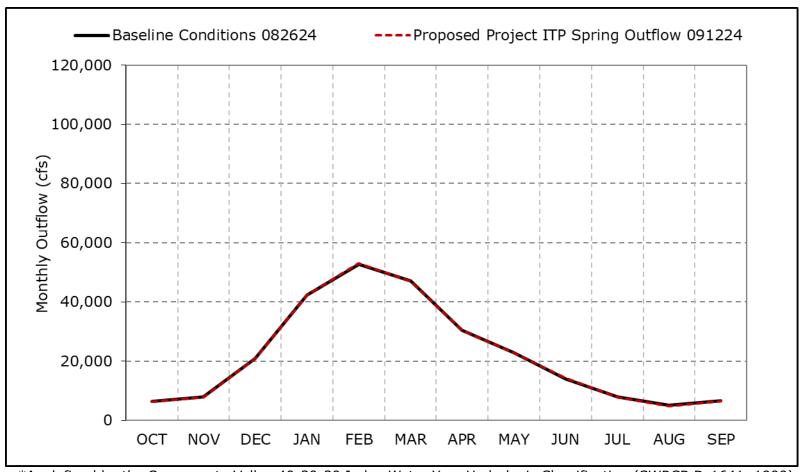
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	8,438	13,624	59,011	112,525	128,285	113,467	67,792	53,491	30,424	11,561	7,017	10,313
20% Exceedance	8,125	7,620	32,860	72,643	82,060	69,795	47,729	35,950	20,512	9,699	6,189	10,156
30% Exceedance	7,969	6,523	20,116	39,101	59,783	52,002	30,353	24,404	12,184	9,053	5,659	10,000
40% Exceedance	7,410	6,042	12,428	28,243	43,041	41,303	24,709	18,883	8,736	8,512	5,488	9,074
50% Exceedance	4,834	5,708	8,699	20,615	30,591	28,115	19,003	15,082	7,277	8,104	4,445	4,063
60% Exceedance	4,110	5,557	7,579	15,265	23,586	22,079	15,133	12,221	7,100	6,522	4,000	3,363
70% Exceedance	4,000	5,121	6,728	12,146	17,910	17,542	12,270	10,627	6,856	5,078	3,979	3,000
80% Exceedance	4,000	4,782	5,931	8,989	12,959	13,029	10,835	9,334	6,081	5,000	3,500	3,000
90% Exceedance	3,000	4,500	5,126	7,694	10,210	9,626	9,551	6,727	4,000	4,000	3,000	3,000
Full Simulation Period Average ^a	6,352	7,865	21,002	42,437	52,812	47,134	30,428	22,855	13,987	8,027	5,119	6,521
Wet Water Years (32%)	7,745	11,099	39,990	89,212	105,597	93,358	58,766	41,598	27,036	11,668	7,242	11,223
Above Normal Water Years (9%)	6,386	6,784	16,470	51,796	54,040	53,952	29,011	24,476	14,645	9,746	6,338	10,254
Below Normal Water Years (20%)	6,331	6,484	12,969	22,072	35,101	31,308	22,225	18,703	8,338	8,053	4,286	3,845
Dry Water Years (21%)	5,797	6,817	12,536	13,473	22,336	19,338	13,514	11,380	6,903	5,165	3,941	3,321
Critical Water Years (18%)	4,530	5,411	8,318	11,023	13,594	11,564	9,606	6,725	5,000	4,004	3,033	3,002

Table 4L-3-10-1b. Delta Outflow, Proposed Project ITP Spring Outflow 091224, Monthly Outflow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	8,453	13,506	58,514	111,651	127,799	113,558	67,478	53,042	31,319	10,817	6,159	10,999
20% Exceedance	8,125	7,552	32,789	72,758	81,257	69,468	47,836	35,927	21,374	9,171	5,532	10,324
30% Exceedance	7,813	6,542	20,130	39,414	59,571	51,470	30,293	24,151	13,154	8,978	5,375	10,07
40% Exceedance	7,813	6,098	12,436	28,683	43,384	41,111	24,608	18,790	8,914	8,187	5,166	8,920
50% Exceedance	4,948	5,776	8,766	21,107	31,251	28,526	19,121	15,019	7,308	7,605	4,000	4,249
60% Exceedance	4,084	5,563	7,591	15,441	24,022	22,311	15,116	12,222	7,100	6,522	4,000	3,499
70% Exceedance	4,000	5,116	6,785	11,116	18,692	17,949	12,267	10,634	6,856	5,021	3,500	3,008
80% Exceedance	4,000	4,784	5,922	9,455	13,690	13,350	10,922	9,153	6,114	5,000	3,500	3,000
90% Exceedance	3,000	4,500	5,151	7,750	10,386	9,411	9,539	6,729	4,000	4,000	3,000	3,000
Full Simulation Period Average ^a	6,387	7,872	20,995	42,522	53,023	46,971	30,405	22,743	14,239	7,850	4,866	6,556
Wet Water Years (32%)	7,767	11,155	39,959	89,312	105,455	92,772	58,715	41,501	27,561	11,555	6,889	10,98
Above Normal Water Years (9%)	6,532	6,662	16,327	51,958	54,213	53,422	28,988	24,352	15,130	9,259	5,606	11,18
Below Normal Water Years (20%)	6,419	6,429	13,068	22,156	35,433	31,455	22,209	18,376	8,532	7,716	4,289	3,837
Dry Water Years (21%)	5,749	6,827	12,545	13,537	22,753	19,484	13,519	11,342	6,913	5,025	3,591	3,458
Critical Water Years (18%)	4,570	5,464	8,284	11,066	14,073	11,628	9,590	6,742	5,000	4,004	3,029	3,002

Table 4L-3-10-1c. Delta Outflow, Proposed Project ITP Spring Outflow 091224 minus Baseline Conditions 082624, Monthly Outflow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	16	-118	-497	-875	-486	91	-313	-448	895	-744	-858	687
20% Exceedance	0	-68	-71	114	-803	-326	107	-24	862	-528	-658	168
30% Exceedance	-156	19	14	314	-211	-532	-60	-254	970	-75	-284	75
40% Exceedance	403	56	8	440	343	-191	-102	-93	179	-325	-322	-154
50% Exceedance	114	67	67	492	660	411	118	-64	31	-499	-445	187
60% Exceedance	-25	6	11	177	436	232	-17	1	0	0	0	136
70% Exceedance	0	-5	57	-1,030	782	406	-3	8	0	-57	-479	8
80% Exceedance	0	2	-9	466	732	321	87	-181	34	0	0	0
90% Exceedance	0	0	25	55	177	-214	-12	1	0	0	0	0
Full Simulation Period Average ^a	35	8	-7	85	210	-163	-24	-113	252	-177	-252	35
Wet Water Years (32%)	22	56	-30	101	-142	-585	-51	-97	524	-114	-353	-238
Above Normal Water Years (9%)	146	-122	-143	161	173	-530	-23	-125	485	-487	-732	931
Below Normal Water Years (20%)	87	-55	99	84	332	147	-15	-327	194	-337	4	-7
Dry Water Years (21%)	-48	10	9	64	417	146	4	-37	10	-140	-350	137
Critical Water Years (18%)	40	53	-34	43	479	64	-17	17	0	0	-4	0

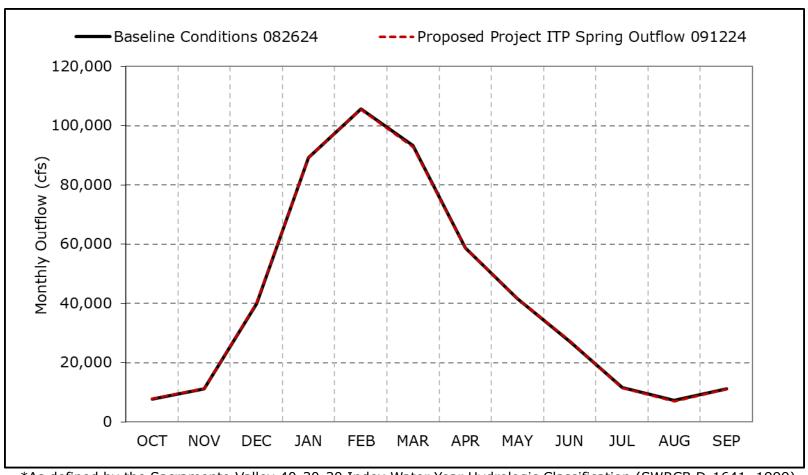

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 $[\]ensuremath{^{*}}$ Water Year Types results are displayed with water year - year type sorting.

Figure 4L-3-10a. Delta Outflow, Long-Term Average Outflow

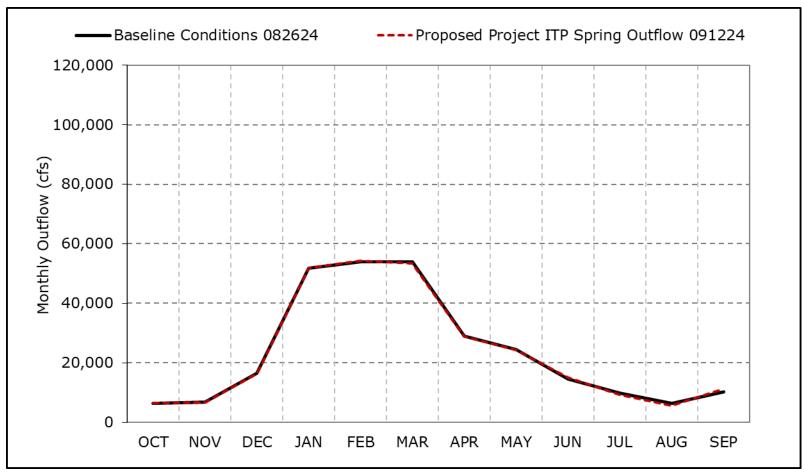


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10b. Delta Outflow, Wet Year Average Outflow

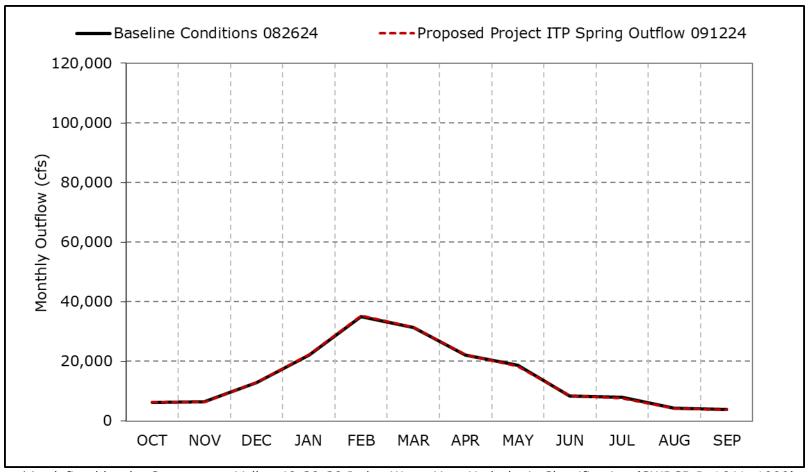


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10c. Delta Outflow, Above Normal Year Average Outflow

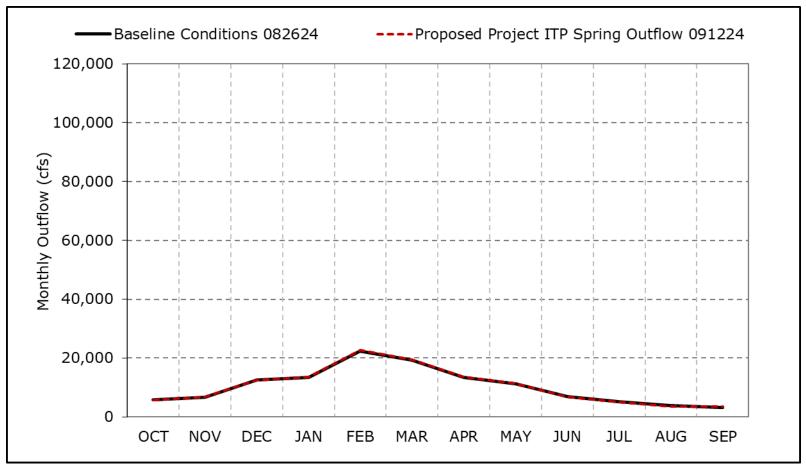


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10d. Delta Outflow, Below Normal Year Average Outflow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10e. Delta Outflow, Dry Year Average Outflow

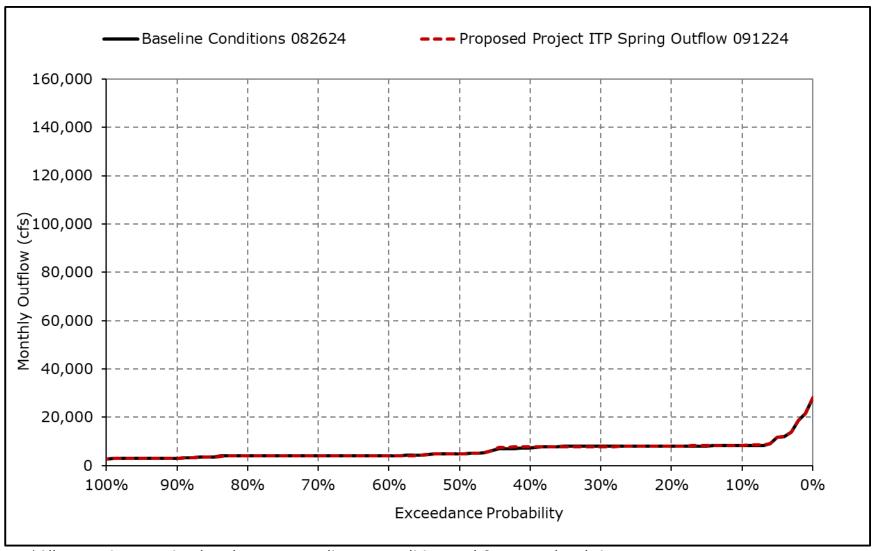


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10f. Delta Outflow, Critical Year Average Outflow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

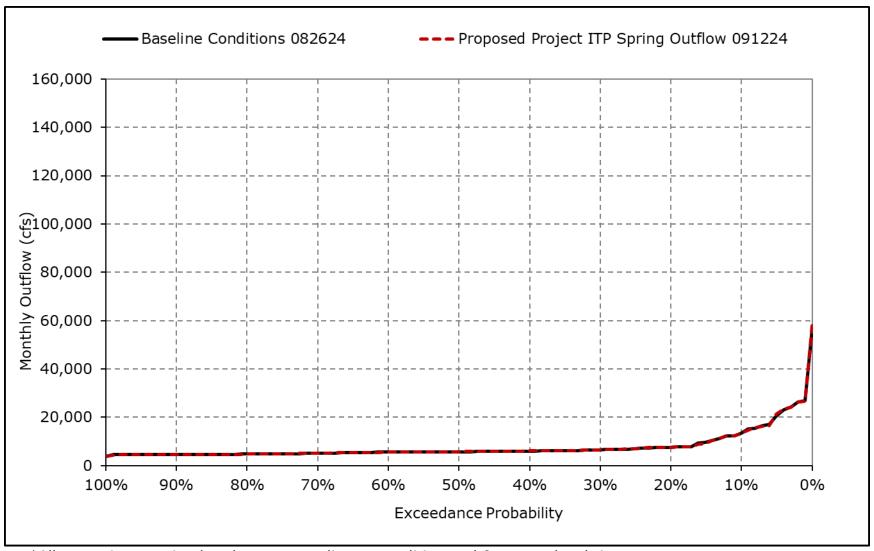

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10g. Delta Outflow, October

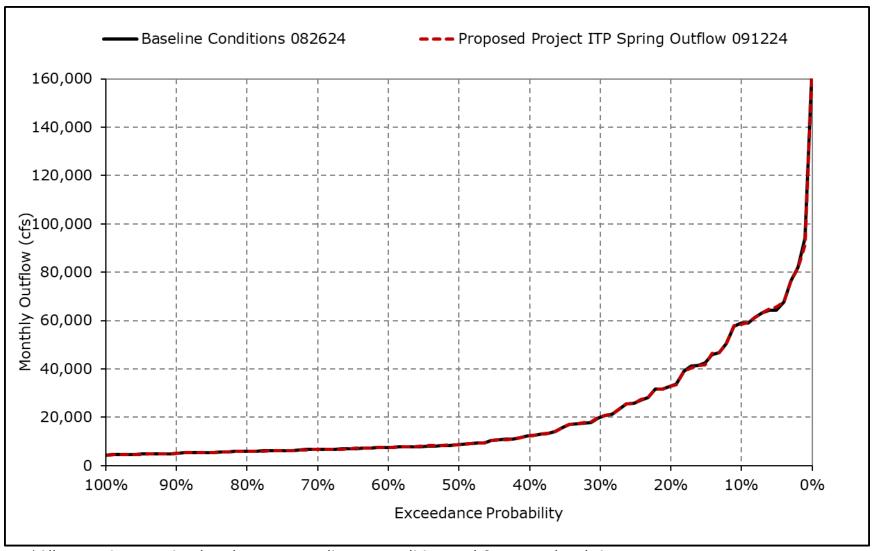

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10h. Delta Outflow, November

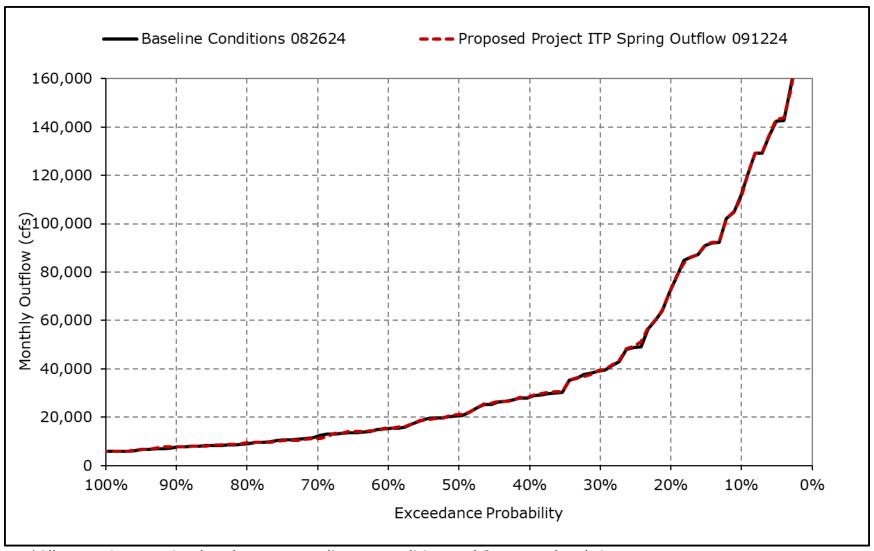

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10i. Delta Outflow, December

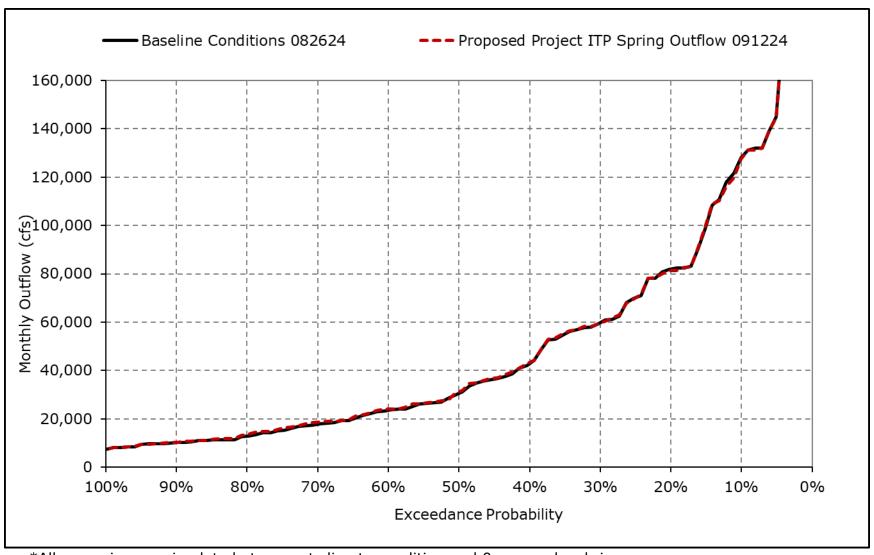

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10j. Delta Outflow, January

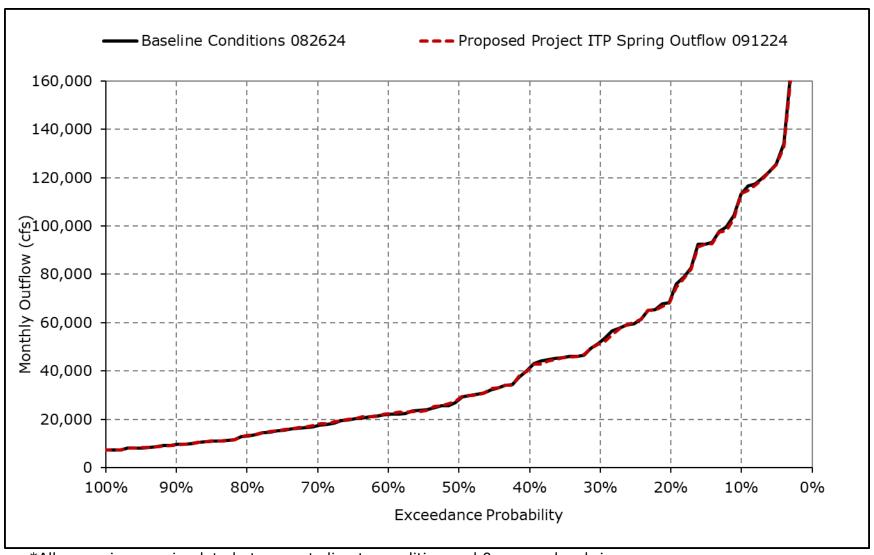

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10k. Delta Outflow, February

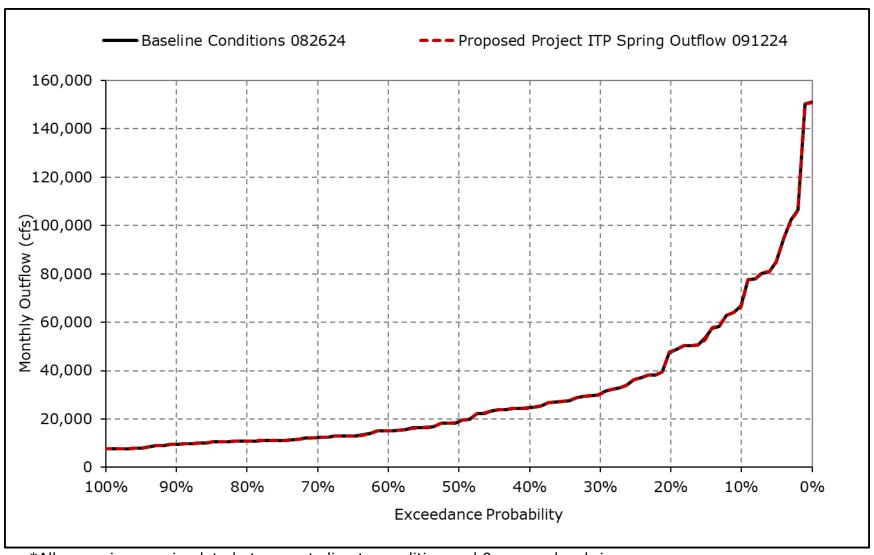

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10l. Delta Outflow, March

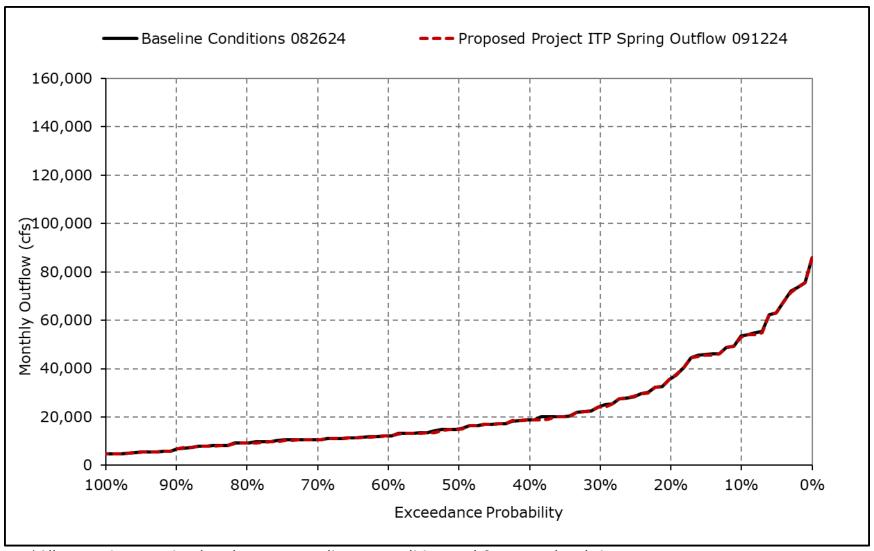

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10m. Delta Outflow, April

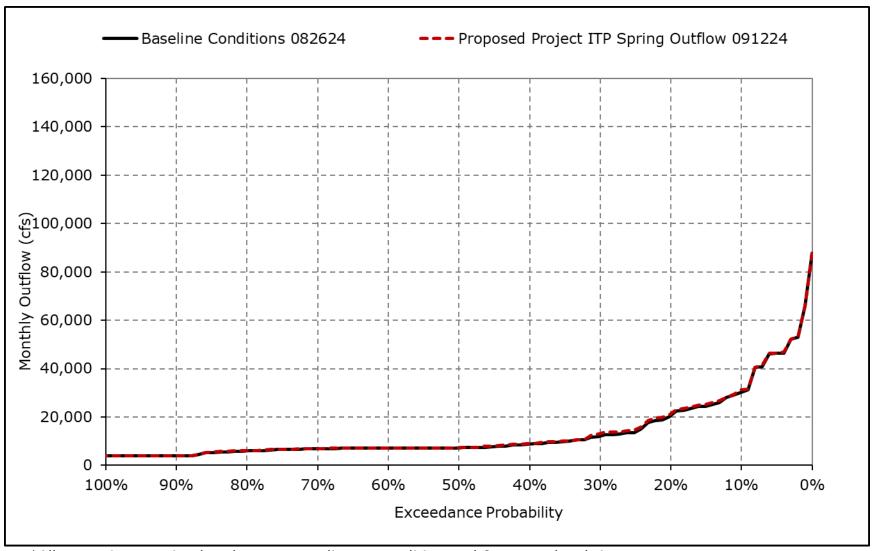

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10n. Delta Outflow, May

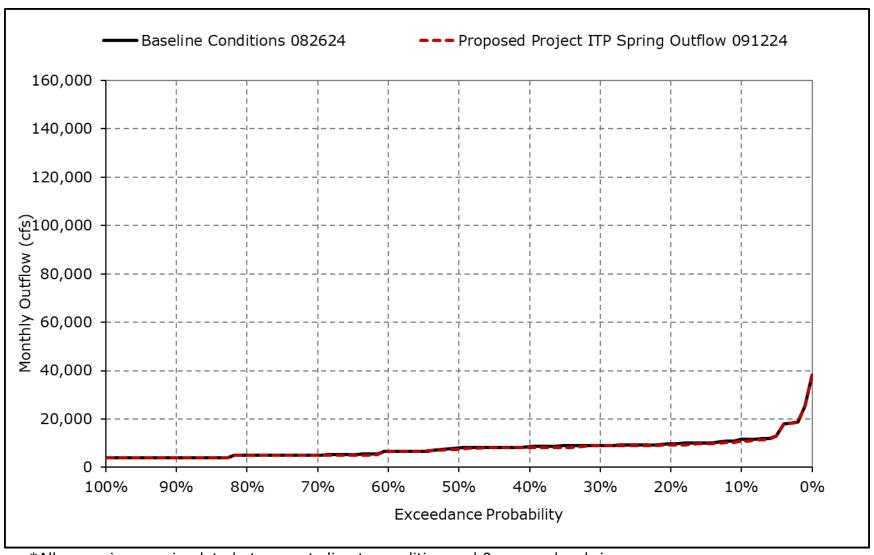

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10o. Delta Outflow, June

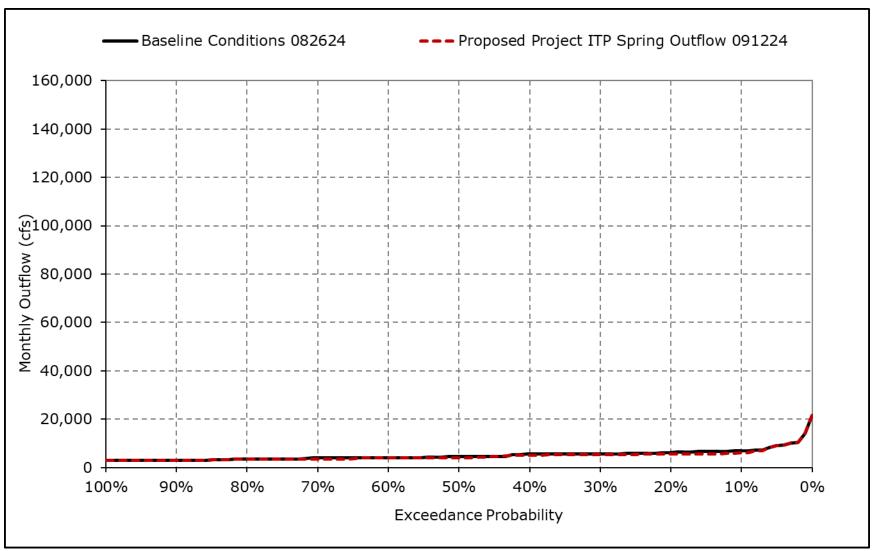

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10p. Delta Outflow, July

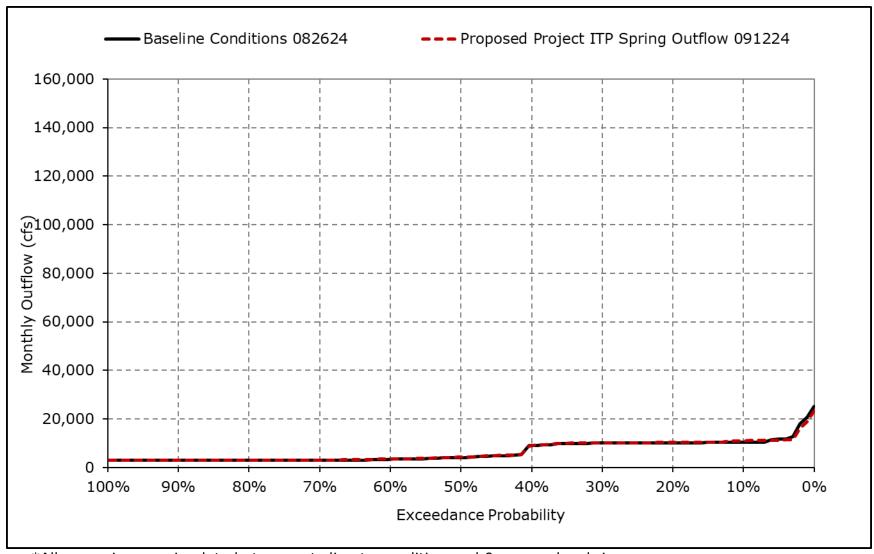

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10q. Delta Outflow, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4L-3-10r. Delta Outflow, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.