Appendix 4B

Attachment 2b: Flow Results (CalSim 3)

Attachment 2b: Flow Results (CalSim 3)

The following results of the CalSim 3 model are included for river flow conditions for the following scenarios:

- Baseline Conditions (082624)
- Proposed Project (082624)

	Model		
Title	Parameter	Table Numbers	Figure Numbers
Sacramento River Flow at Freeport	C_SAC048	4B-2-1-1a to 4B-2-1-1c	4B-2-1a to 4B-2-1r
Georgiana Slough Flow	C_SAC029B	4B-2-2-1a to 4B-2-2-1c	4B-2-2a to 4B-2-2r
Yolo Bypass Flow	C_YBP020	4B-2-3-1a to 4B-2-3-1c	4B-2-3a to 4B-2-3r
Sacramento River Flow at Rio Vista	C_SAC007	4B-2-4-1a to 4B-2-4-1c	4B-2-4a to 4B-2-4r
San Joaquin River at Vernalis	C_SJR070	4B-2-5-1a to 4B-2-5-1c	4B-2-5a to 4B-2-5r
San Joaquin River at Vernalis (60-20-20)	C_SJR070	4B-2-6-1a to 4B-2-6-1c	4B-2-6a to 4B-2-6f
Mokelumne River below Cosumnes	C_MOK019	4B-2-7-1a to 4B-2-7-1c	4B-2-7a to 4B-2-7r
Old and Middle River Flow	C_OMR014	4B-2-8-1a to 4B-2-8-1c	4B-2-8a to 4B-2-8r
Qwest	C_SJR013	4B-2-9-1a to 4B-2-9-1c	4B-2-9a to 4B-2-9r
Delta Outflow	NDOI	4B-2-10-1a to 4B-2-10-1c	4B-2-10a to 4B-2-10r

Report formats:

- Monthly tables comparing two scenarios (exceedance values, long-term average, and average by water year type).
- Monthly pattern charts (long-term average and average by water year type) including all scenarios.
- Monthly exceedance charts (all months) including all scenarios.

Table 4B-2-1-1a. Sacramento River Flow at Freeport, Baseline Conditions 082624, Monthly Flow (cfs)

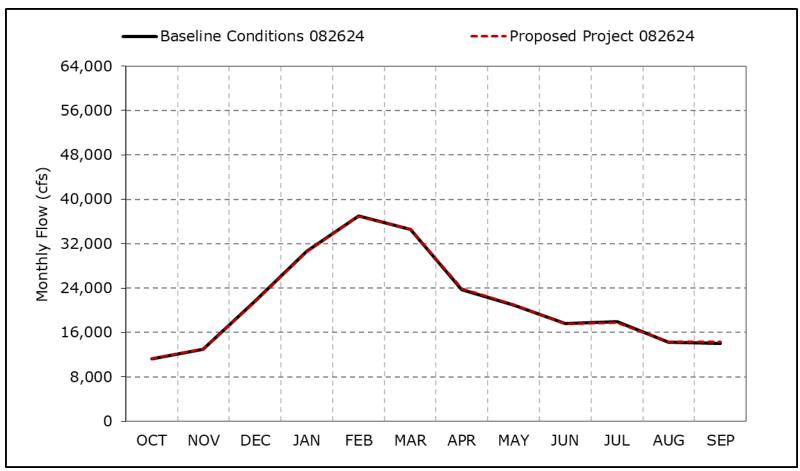
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	15,590	19,596	47,575	66,116	69,548	69,127	57,031	45,980	29,555	23,381	18,592	20,448
20% Exceedance	14,631	14,595	32,648	53,437	62,477	56,765	37,146	34,880	22,685	22,215	18,249	19,160
30% Exceedance	13,468	13,826	22,740	35,691	49,756	46,224	24,889	22,587	17,080	20,814	17,641	17,393
40% Exceedance	12,846	13,231	16,978	27,913	38,005	35,570	19,393	16,922	14,165	19,498	17,207	16,108
50% Exceedance	10,690	12,539	15,335	22,245	28,144	26,215	16,914	13,771	13,568	18,767	16,260	13,219
60% Exceedance	9,373	11,112	14,044	17,765	24,258	22,683	12,320	12,571	13,243	17,753	13,549	10,826
70% Exceedance	8,396	10,024	11,051	14,221	18,511	19,957	11,210	11,287	12,372	16,262	10,871	9,952
80% Exceedance	8,044	8,545	10,204	12,127	15,981	14,898	10,423	10,592	11,515	13,157	9,036	9,058
90% Exceedance	6,187	7,229	8,873	10,574	13,366	11,595	9,263	7,768	9,686	9,978	7,935	8,224
Full Simulation Period Average ^a	11,308	13,023	21,597	30,639	37,011	34,526	23,773	20,917	17,647	17,910	14,281	14,057
Wet Water Years (32%)	13,245	16,201	34,067	52,284	60,733	56,175	43,114	36,030	27,074	20,095	17,683	19,512
Above Normal Water Years (9%)	11,006	12,935	20,839	41,115	43,249	44,036	24,747	23,721	19,219	21,318	18,298	17,693
Below Normal Water Years (20%)	11,460	12,330	16,072	22,837	30,324	29,268	17,217	16,738	13,661	21,214	16,365	13,312
Dry Water Years (21%)	10,780	12,430	16,510	15,725	22,893	20,669	12,247	11,638	13,384	16,583	11,056	10,077
Critical Water Years (18%)	8,464	8,880	11,881	12,986	15,621	13,294	9,633	8,114	9,504	10,201	7,673	8,013

Table 4B-2-1-1b. Sacramento River Flow at Freeport, Proposed Project 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	15,621	19,756	47,375	66,119	69,532	69,116	57,022	45,961	29,554	23,133	18,636	21,465
20% Exceedance	14,664	14,595	32,625	53,445	62,459	56,764	37,232	34,923	22,690	22,118	18,293	20,030
30% Exceedance	13,459	13,705	22,799	35,687	49,596	46,091	25,501	22,790	16,704	20,751	17,729	18,147
40% Exceedance	12,754	13,233	17,262	27,990	37,985	35,699	19,629	16,727	14,005	19,336	17,193	16,578
50% Exceedance	10,661	12,519	15,256	22,046	27,556	26,490	17,045	13,940	13,224	18,767	16,454	13,011
60% Exceedance	9,286	11,167	14,035	17,665	23,974	22,841	12,590	12,854	12,807	17,652	13,773	10,824
70% Exceedance	8,384	9,910	11,027	14,305	19,259	20,191	11,432	11,534	12,353	16,313	10,591	9,921
80% Exceedance	8,041	8,555	10,204	12,355	15,979	14,625	10,545	10,761	11,587	13,069	9,141	9,113
90% Exceedance	6,233	7,632	8,953	10,484	13,328	11,837	9,530	7,759	9,698	10,012	7,898	8,219
Full Simulation Period Average ^a	11,284	13,004	21,597	30,622	36,946	34,632	23,932	20,998	17,565	17,822	14,337	14,346
Wet Water Years (32%)	13,157	16,166	34,106	52,280	60,704	56,174	43,115	36,028	27,082	20,058	17,743	20,322
Above Normal Water Years (9%)	10,922	12,825	20,821	41,092	43,198	44,296	24,926	23,920	19,221	21,289	18,111	19,287
Below Normal Water Years (20%)	11,338	12,302	16,165	22,756	30,260	29,512	17,648	16,701	13,559	20,776	16,754	12,753
Dry Water Years (21%)	10,922	12,457	16,405	15,753	22,731	20,883	12,532	11,965	13,007	16,671	10,964	10,088
Critical Water Years (18%)	8,499	8,891	11,839	12,972	15,599	13,235	9,616	8,128	9,589	10,174	7,644	7,991

Table 4B-2-1-1c. Sacramento River Flow at Freeport, Proposed Project 082624 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	31	160	-199	3	-16	-12	-9	-19	-1	-248	45	1,017
20% Exceedance	33	0	-23	7	-18	-1	86	43	5	-97	44	870
30% Exceedance	-9	-121	59	-4	-160	-132	611	204	-376	-63	88	754
40% Exceedance	-92	1	284	76	-20	129	236	-195	-160	-162	-14	469
50% Exceedance	-29	-20	-78	-199	-588	275	131	169	-345	0	194	-208
60% Exceedance	-87	55	-9	-101	-283	159	270	283	-436	-101	223	-2
70% Exceedance	-12	-114	-24	84	747	234	222	247	-19	51	-280	-32
80% Exceedance	-3	10	0	228	-2	-273	123	168	72	-87	105	54
90% Exceedance	45	403	80	-91	-39	242	267	-9	11	34	-37	-5
Full Simulation Period Average ^a	-24	-19	0	-17	-65	106	159	81	-82	-89	56	289
Wet Water Years (32%)	-88	-35	39	-5	-28	-1	1	-2	8	-37	60	810
Above Normal Water Years (9%)	-84	-110	-18	-23	-52	260	180	199	1	-29	-187	1,593
Below Normal Water Years (20%)	-122	-28	94	-82	-64	244	430	-37	-102	-439	390	-559
Dry Water Years (21%)	143	27	-105	28	-162	213	285	327	-378	88	-92	11
Critical Water Years (18%)	35	11	-42	-15	-22	-59	-17	14	85	-27	-29	-23

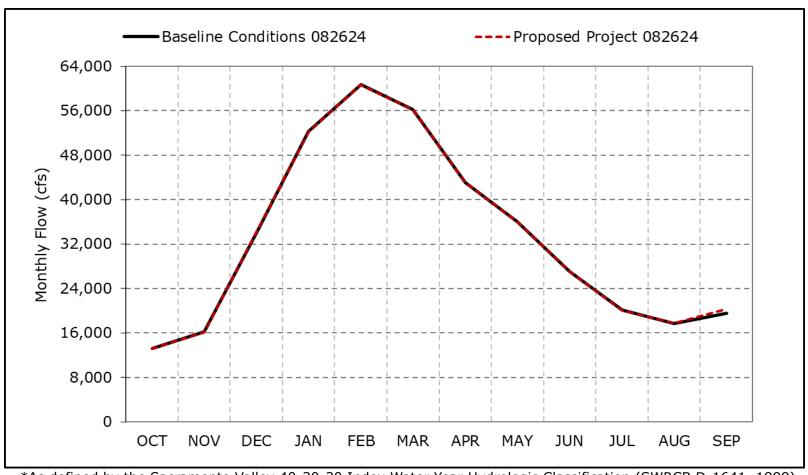

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 $[\]ensuremath{^{*}}$ Water Year Types results are displayed with water year - year type sorting.

Figure 4B-2-1a. Sacramento River Flow at Freeport, Long-Term Average Flow

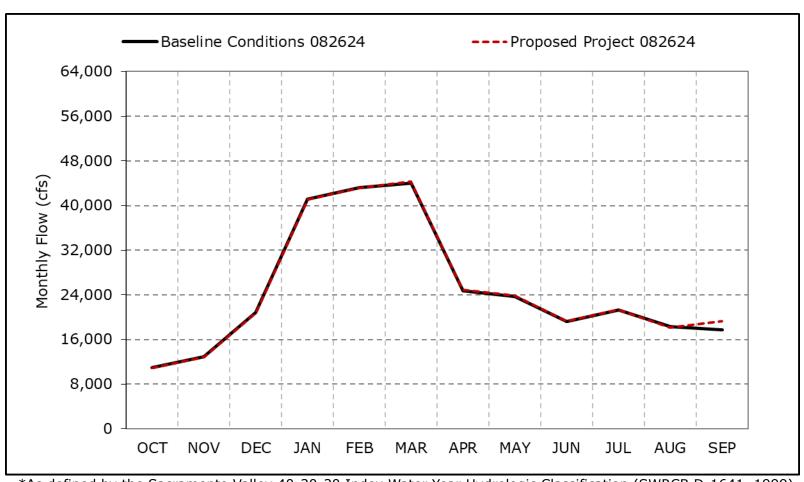


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1b. Sacramento River Flow at Freeport, Wet Year Average Flow

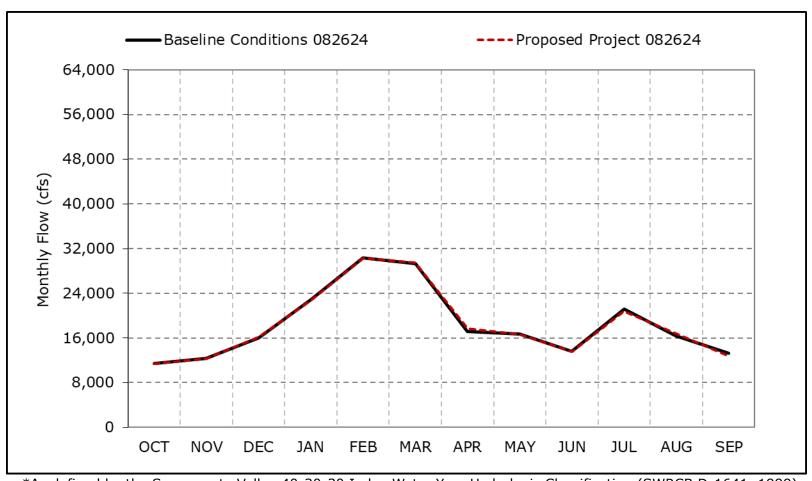


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1c. Sacramento River Flow at Freeport, Above Normal Year Average Flow

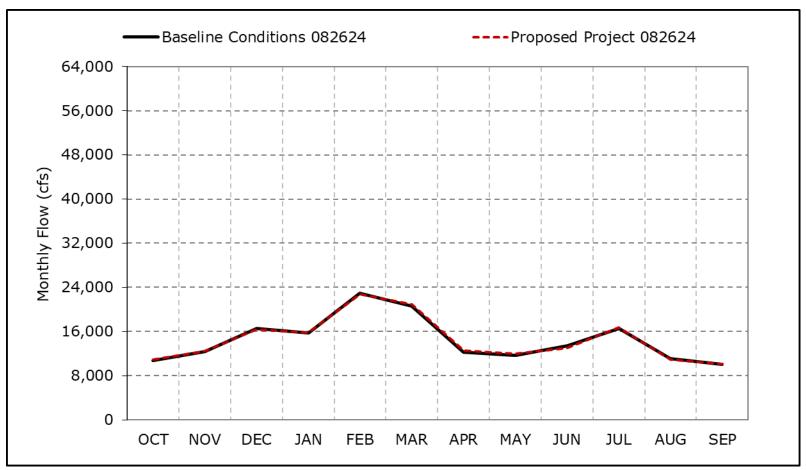


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1d. Sacramento River Flow at Freeport, Below Normal Year Average Flow

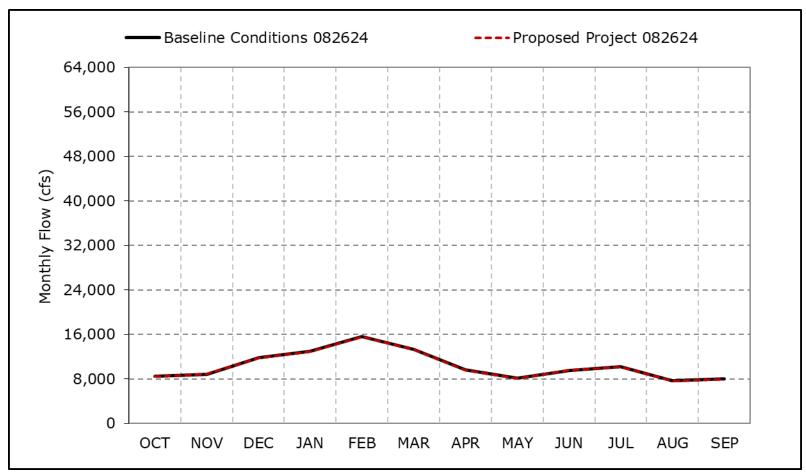


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1e. Sacramento River Flow at Freeport, Dry Year Average Flow

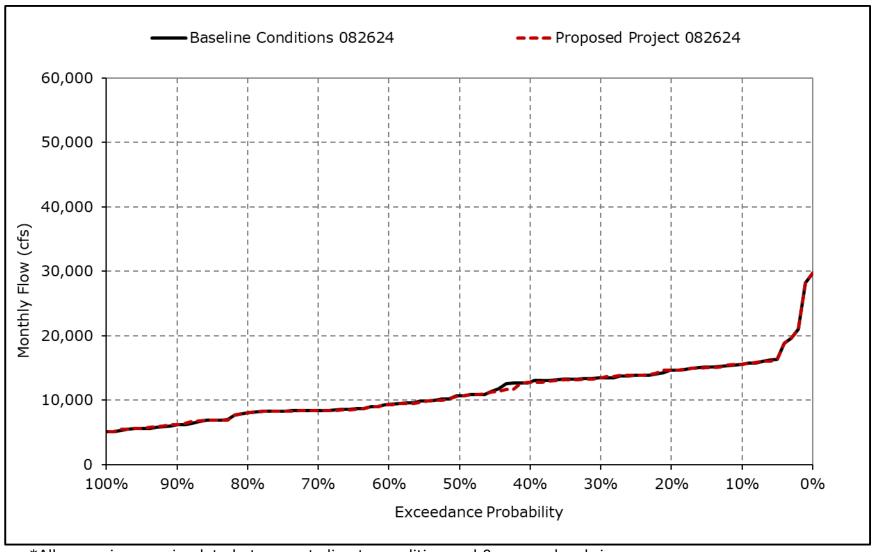


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1f. Sacramento River Flow at Freeport, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

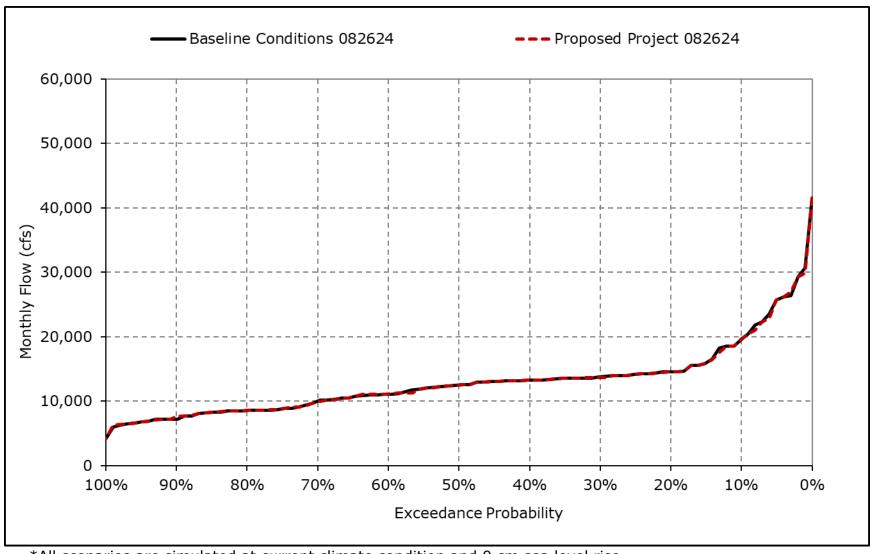

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1g. Sacramento River Flow at Freeport, October

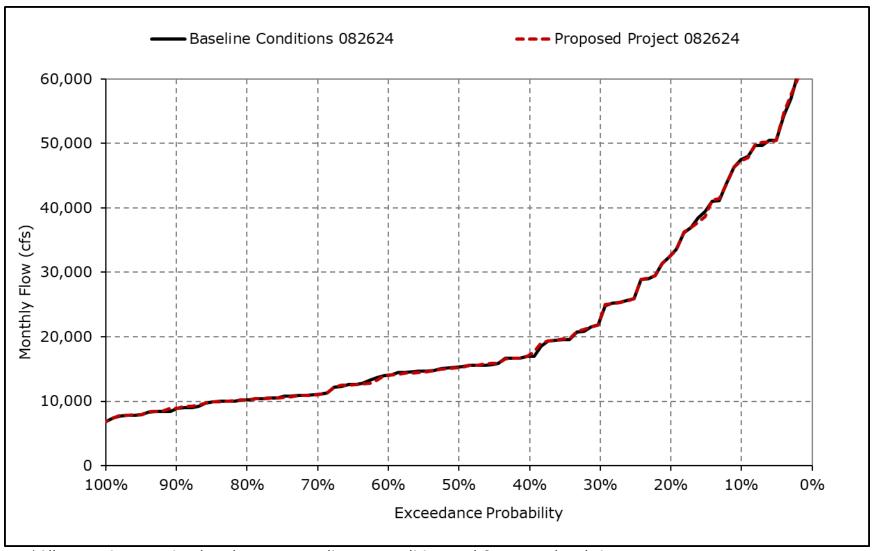

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1h. Sacramento River Flow at Freeport, November

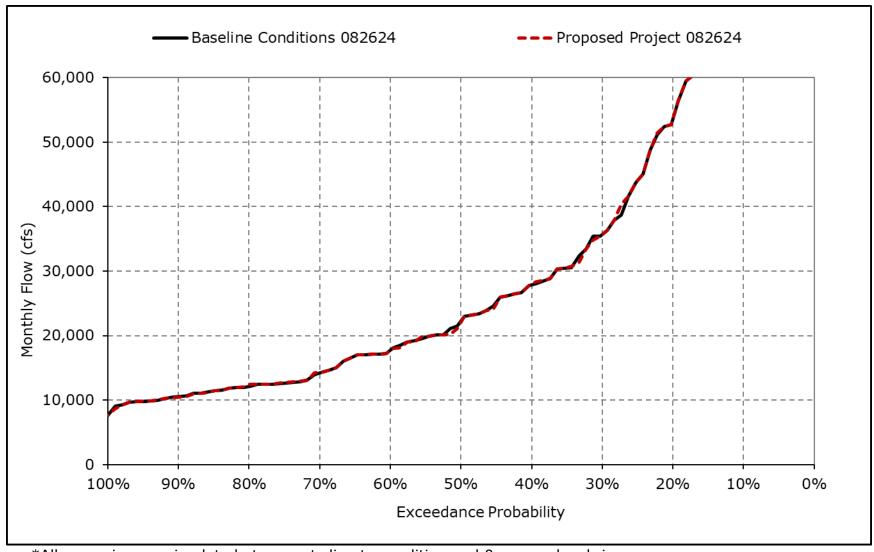

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1i. Sacramento River Flow at Freeport, December

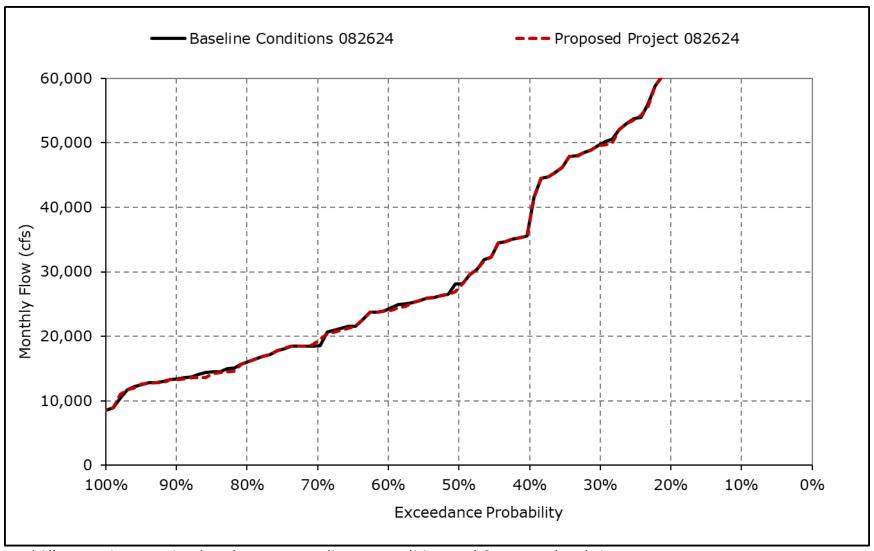

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1j. Sacramento River Flow at Freeport, January

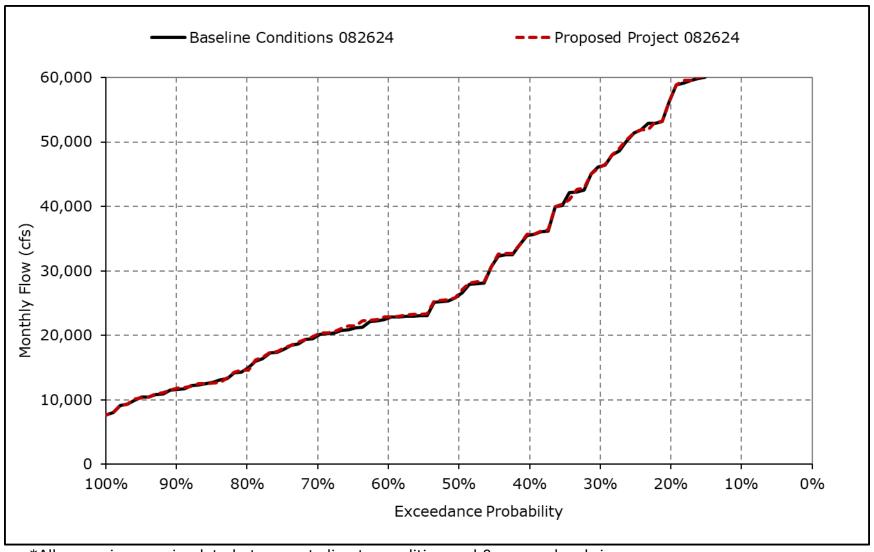

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1k. Sacramento River Flow at Freeport, February

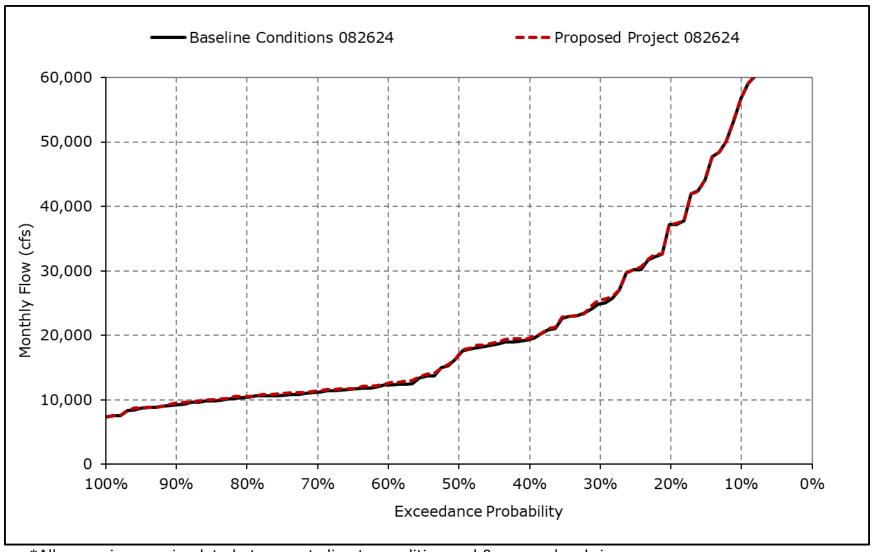

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1I. Sacramento River Flow at Freeport, March

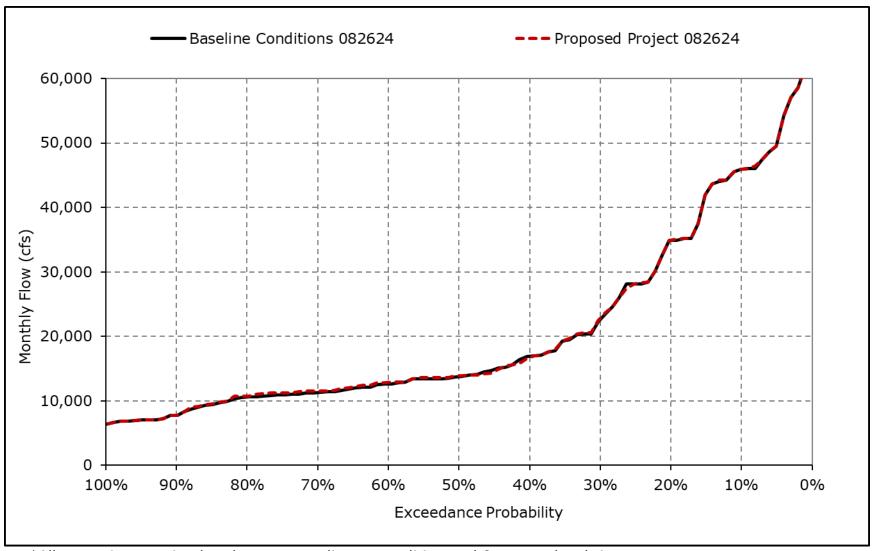

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1m. Sacramento River Flow at Freeport, April

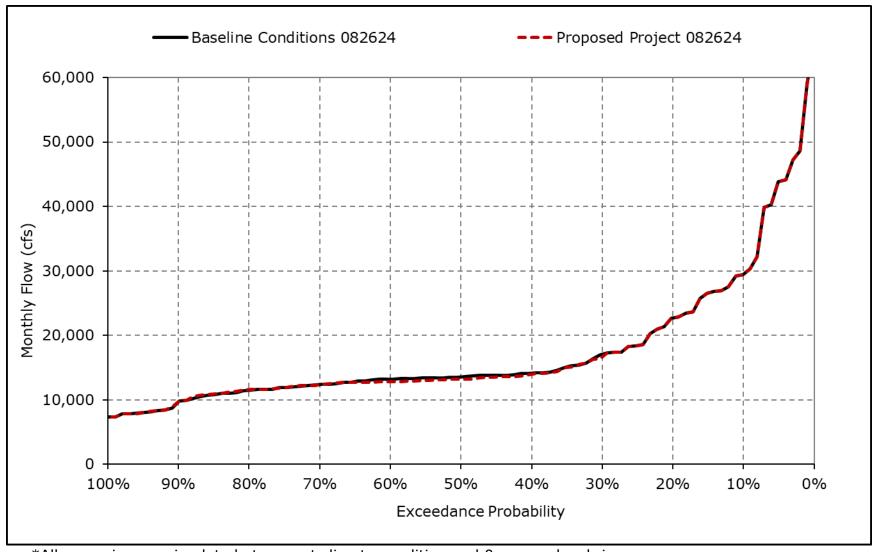

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1n. Sacramento River Flow at Freeport, May

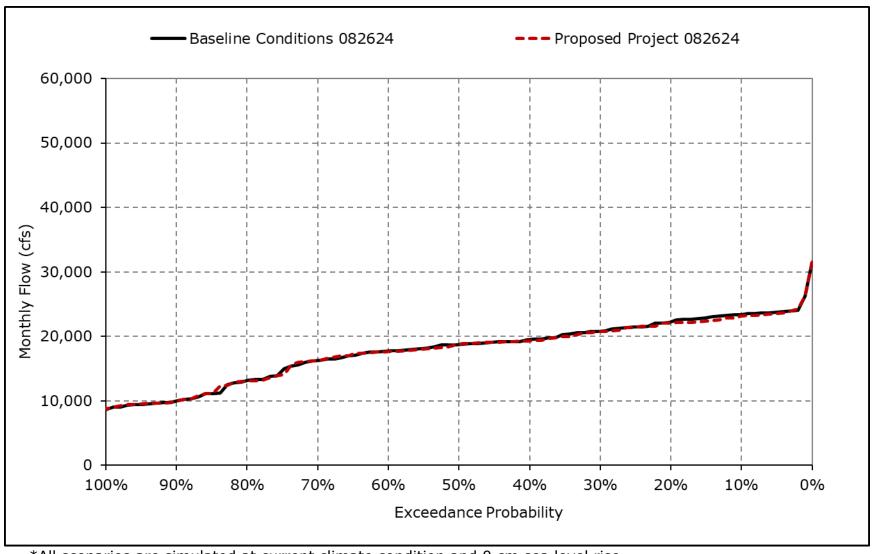

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1o. Sacramento River Flow at Freeport, June

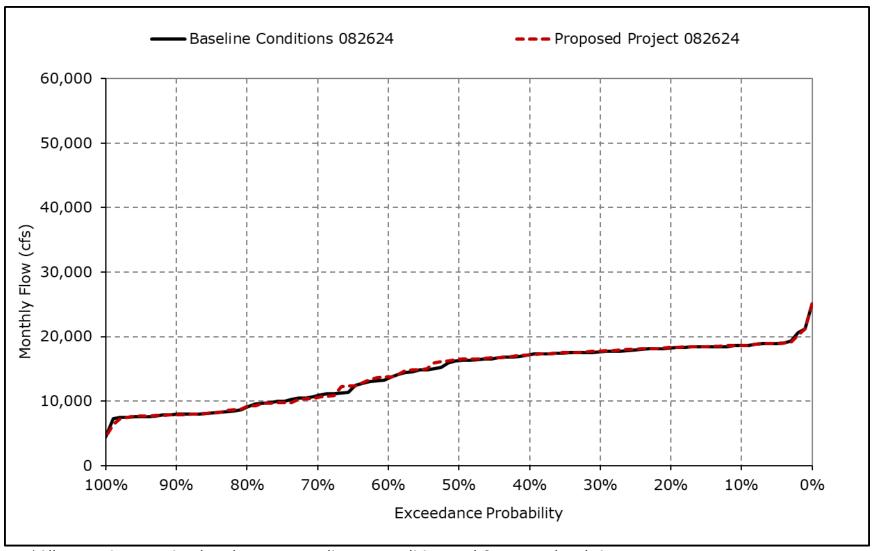

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1p. Sacramento River Flow at Freeport, July

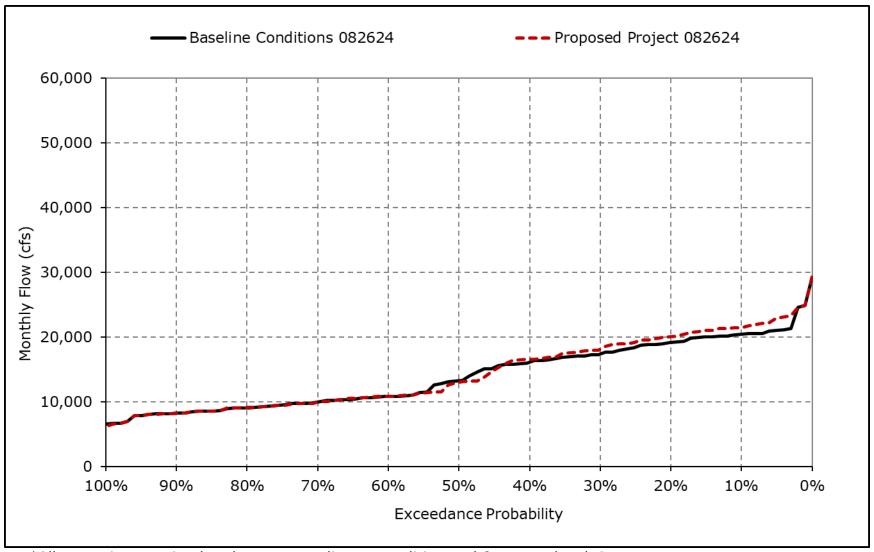

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1q. Sacramento River Flow at Freeport, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-1r. Sacramento River Flow at Freeport, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4B-2-2-1a. Georgiana Slough Flow, Baseline Conditions 082624, Monthly Flow (cfs)

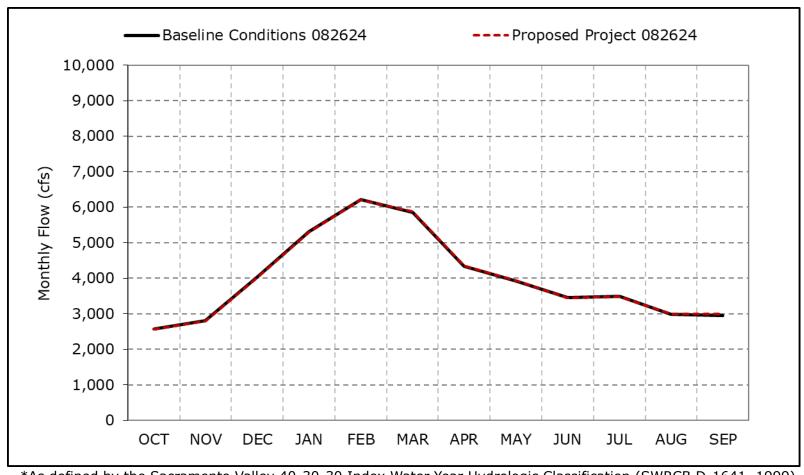
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,174	3,740	7,716	10,338	10,825	10,764	9,038	7,471	5,144	4,269	3,595	3,860
20% Exceedance	3,039	3,027	5,606	8,552	9,829	9,011	6,230	5,903	4,170	4,105	3,545	3,677
30% Exceedance	2,874	2,915	4,187	6,028	8,019	7,516	4,493	4,161	3,379	3,906	3,459	3,427
40% Exceedance	2,786	2,830	3,372	4,926	6,357	6,015	3,712	3,358	2,966	3,721	3,399	3,245
50% Exceedance	2,484	2,738	3,137	4,117	4,967	4,686	3,360	2,912	2,880	3,616	3,264	2,838
60% Exceedance	2,298	2,536	2,959	3,481	4,417	4,182	2,708	2,742	2,834	3,473	2,879	2,498
70% Exceedance	2,158	2,381	2,535	2,977	3,601	3,798	2,556	2,561	2,711	3,263	2,501	2,374
80% Exceedance	2,108	2,169	2,406	2,676	3,237	3,081	2,442	2,463	2,591	2,822	2,241	2,247
90% Exceedance	1,844	1,978	2,222	2,456	2,868	2,615	2,279	2,064	2,331	2,372	2,087	2,129
Full Simulation Period Average ^a	2,569	2,805	4,025	5,307	6,221	5,862	4,333	3,924	3,458	3,495	2,984	2,955
Wet Water Years (32%)	2,844	3,257	5,794	8,376	9,580	8,928	7,071	6,063	4,793	3,804	3,466	3,727
Above Normal Water Years (9%)	2,526	2,793	3,920	6,795	7,106	7,209	4,470	4,321	3,681	3,977	3,553	3,470
Below Normal Water Years (20%)	2,591	2,706	3,240	4,201	5,274	5,118	3,405	3,333	2,894	3,963	3,279	2,850
Dry Water Years (21%)	2,494	2,720	3,303	3,192	4,221	3,900	2,701	2,611	2,855	3,307	2,528	2,392
Critical Water Years (18%)	2,166	2,215	2,647	2,803	3,191	2,856	2,330	2,112	2,306	2,404	2,049	2,099

Table 4B-2-2-1b. Georgiana Slough Flow, Proposed Project 082624, Monthly Flow (cfs)

				_		_			_	_	_	
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,181	3,763	7,688	10,339	10,823	10,763	9,037	7,468	5,144	4,234	3,601	4,003
20% Exceedance	3,043	3,027	5,603	8,553	9,826	9,011	6,246	5,911	4,171	4,091	3,552	3,800
30% Exceedance	2,873	2,899	4,195	6,030	7,998	7,498	4,580	4,190	3,325	3,897	3,472	3,534
40% Exceedance	2,773	2,831	3,414	4,937	6,354	6,034	3,745	3,330	2,942	3,698	3,397	3,311
50% Exceedance	2,480	2,735	3,124	4,089	4,883	4,725	3,379	2,936	2,832	3,616	3,292	2,807
60% Exceedance	2,283	2,540	2,958	3,462	4,373	4,204	2,749	2,782	2,772	3,459	2,912	2,498
70% Exceedance	2,154	2,359	2,535	2,988	3,703	3,834	2,585	2,596	2,709	3,270	2,462	2,370
80% Exceedance	2,107	2,170	2,406	2,709	3,237	3,046	2,459	2,487	2,601	2,810	2,256	2,255
90% Exceedance	1,850	2,040	2,234	2,453	2,861	2,650	2,317	2,063	2,333	2,377	2,080	2,128
Full Simulation Period Average ^a	2,566	2,802	4,025	5,304	6,212	5,877	4,355	3,935	3,447	3,483	2,992	2,996
Wet Water Years (32%)	2,832	3,252	5,799	8,375	9,576	8,928	7,071	6,063	4,794	3,799	3,474	3,842
Above Normal Water Years (9%)	2,514	2,777	3,917	6,791	7,098	7,245	4,496	4,349	3,681	3,973	3,526	3,695
Below Normal Water Years (20%)	2,573	2,702	3,253	4,190	5,265	5,153	3,466	3,327	2,880	3,901	3,334	2,771
Dry Water Years (21%)	2,514	2,723	3,289	3,196	4,198	3,931	2,741	2,657	2,801	3,320	2,515	2,394
Critical Water Years (18%)	2,171	2,217	2,641	2,800	3,187	2,847	2,327	2,114	2,318	2,400	2,045	2,096

Table 4B-2-2-1c. Georgiana Slough Flow, Proposed Project 082624 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	7	23	-28	2	-2	-2	-1	-3	0	-35	6	144
20% Exceedance	5	0	-3	1	-3	0	16	8	1	-14	7	123
30% Exceedance	-1	-16	8	2	-21	-19	86	29	-54	-9	12	107
40% Exceedance	-14	0	42	11	-3	18	33	-28	-23	-22	-3	66
50% Exceedance	-4	-3	-13	-28	-83	39	19	25	-48	0	28	-31
60% Exceedance	-15	3	-1	-18	-44	22	41	41	-62	-14	33	0
70% Exceedance	-4	-22	0	12	101	36	29	35	-2	7	-39	-4
80% Exceedance	0	1	0	33	0	-35	17	24	10	-12	15	8
90% Exceedance	6	62	12	-3	-7	34	38	-1	2	5	-7	-1
Full Simulation Period Average ^a	-3	-3	0	-2	-9	15	23	11	-12	-13	8	41
Wet Water Years (32%)	-12	-5	6	-1	-4	0	0	0	1	-5	8	115
Above Normal Water Years (9%)	-12	-16	-3	-3	-7	37	25	28	0	-4	-26	225
Below Normal Water Years (20%)	-17	-4	13	-12	-9	35	61	-5	-14	-62	55	-79
Dry Water Years (21%)	20	4	-15	4	-23	30	40	46	-53	13	-13	2
Critical Water Years (18%)	5	2	-6	-2	-3	-8	-2	2	12	-4	-4	-3

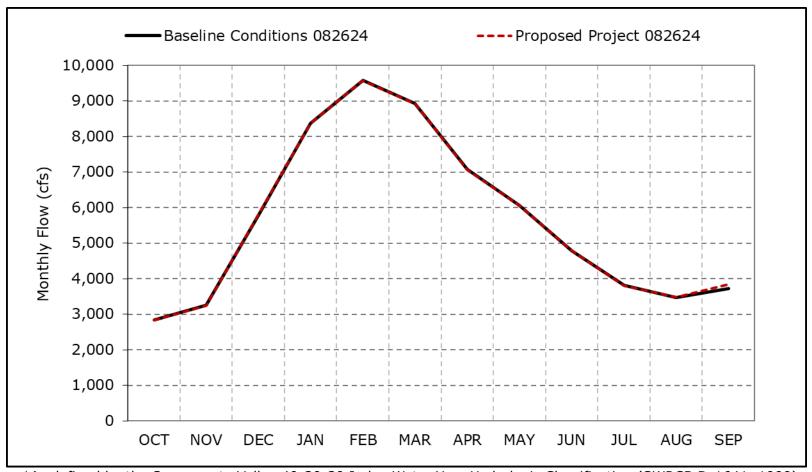

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*} Water Year Types results are displayed with water year - year type sorting.

Figure 4B-2-2a. Georgiana Slough Flow, Long-Term Average Flow

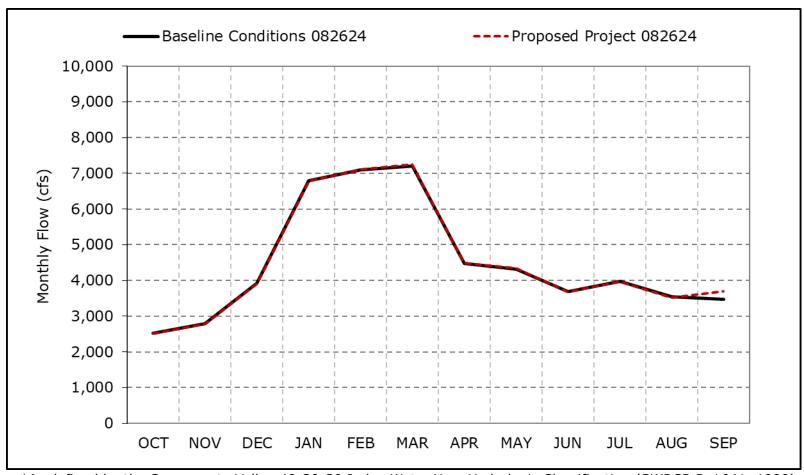


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2b. Georgiana Slough Flow, Wet Year Average Flow

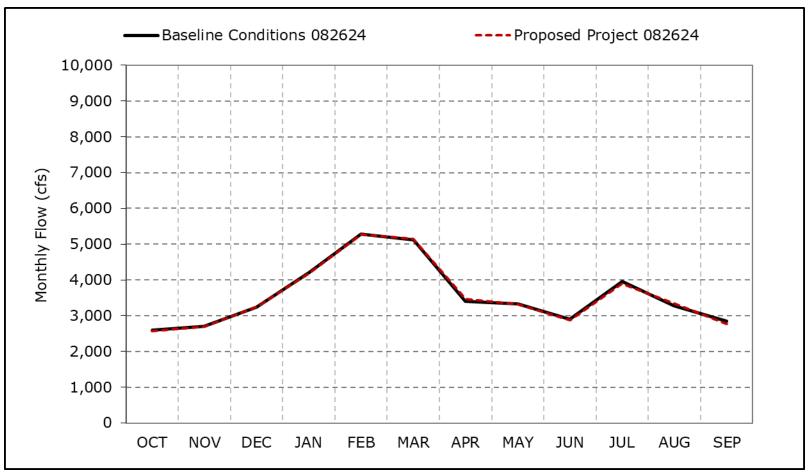


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2c. Georgiana Slough Flow, Above Normal Year Average Flow

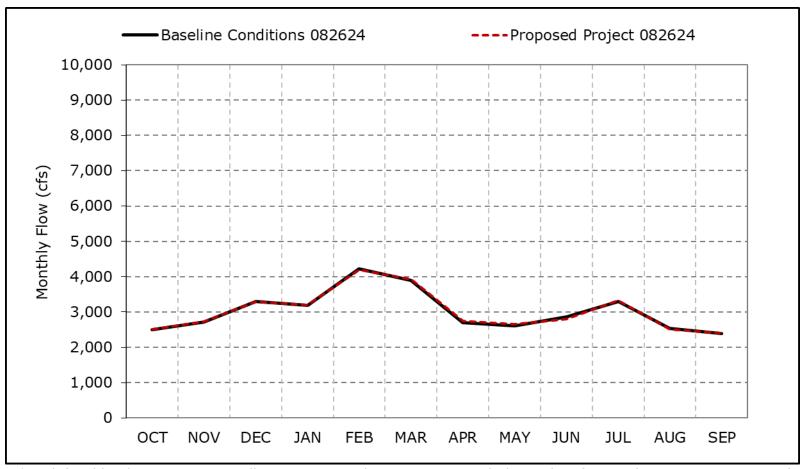


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2d. Georgiana Slough Flow, Below Normal Year Average Flow

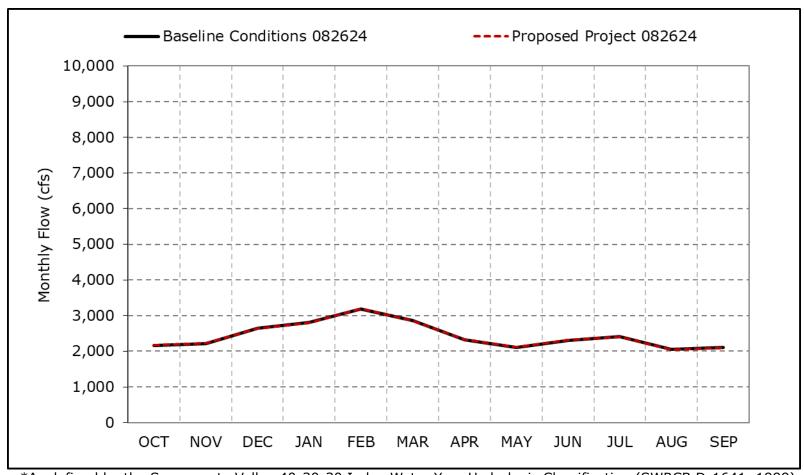


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2e. Georgiana Slough Flow, Dry Year Average Flow

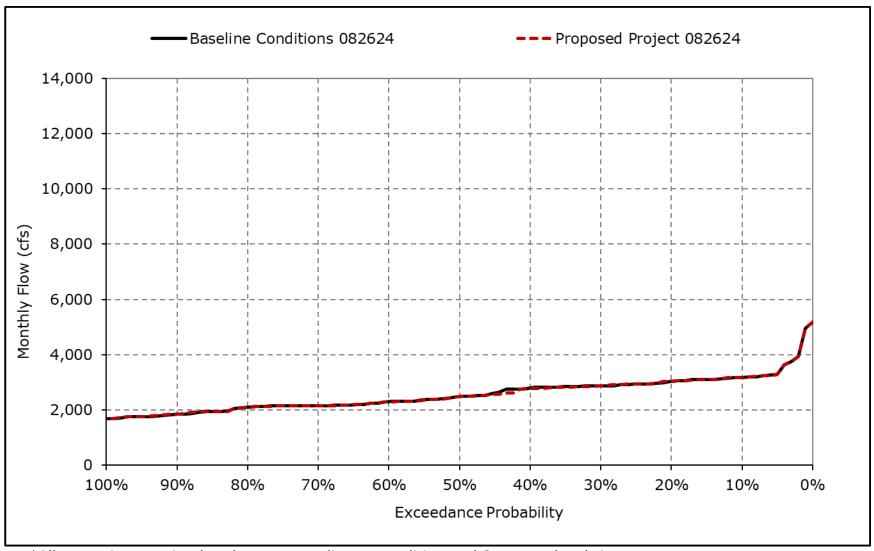


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2f. Georgiana Slough Flow, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

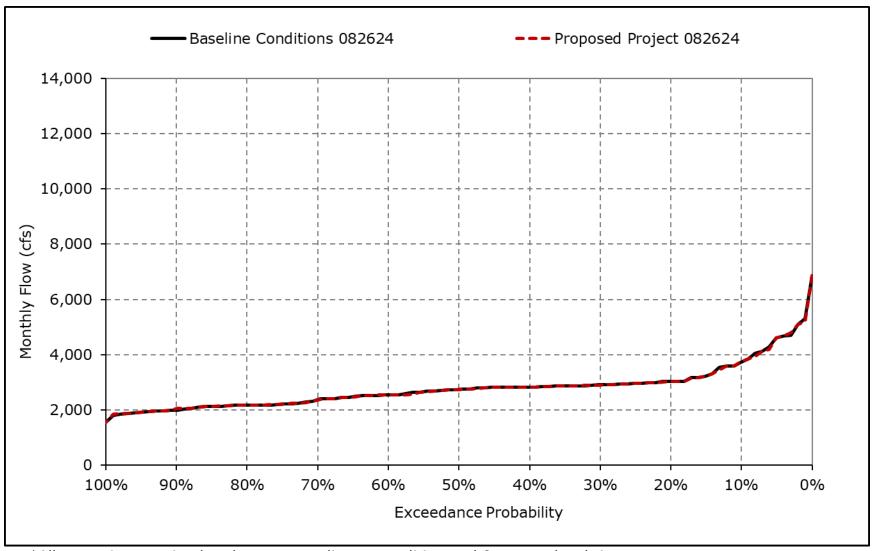

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2g. Georgiana Slough Flow, October

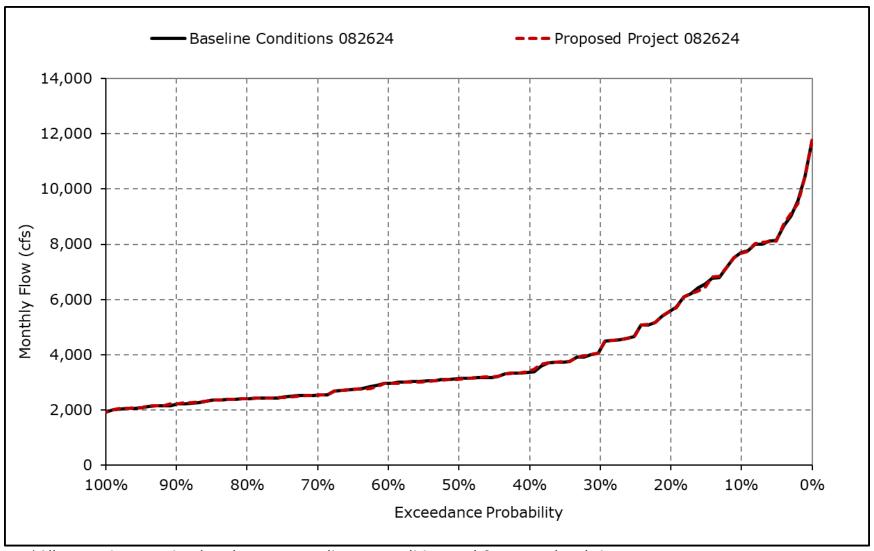

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2h. Georgiana Slough Flow, November

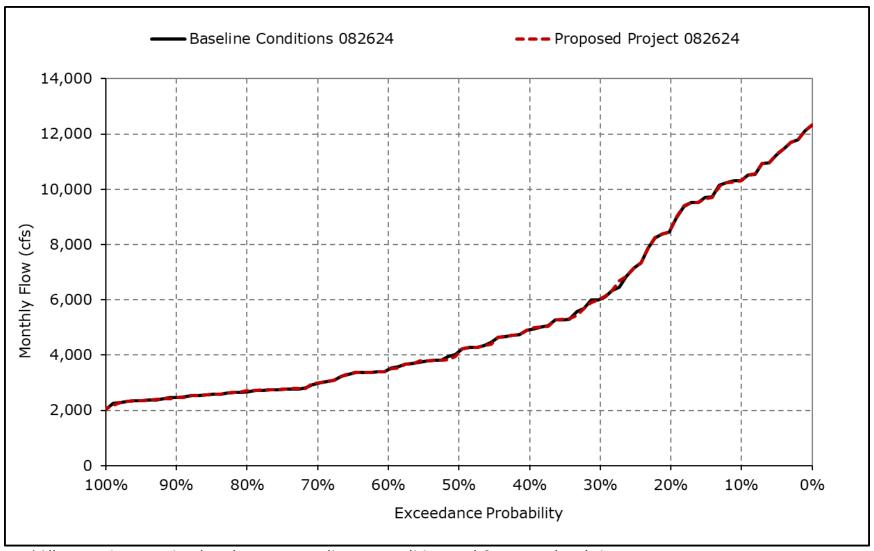

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2i. Georgiana Slough Flow, December

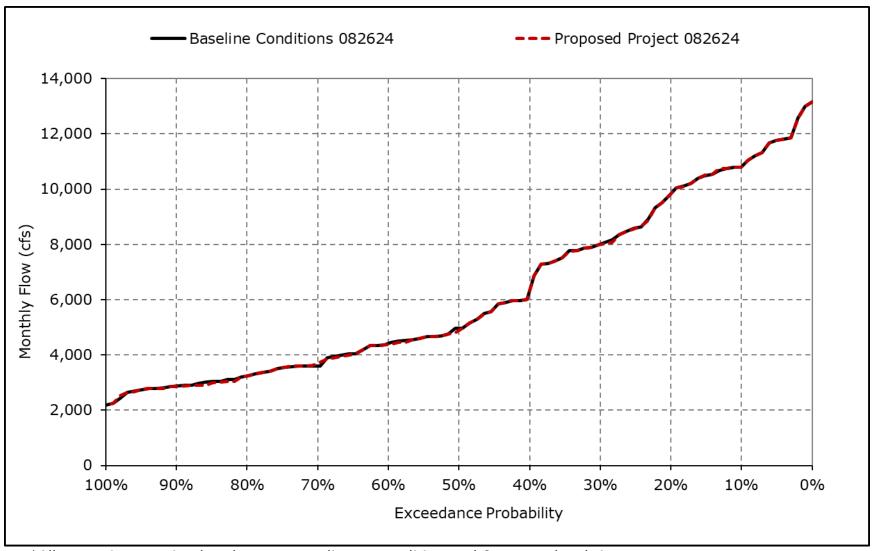

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2j. Georgiana Slough Flow, January

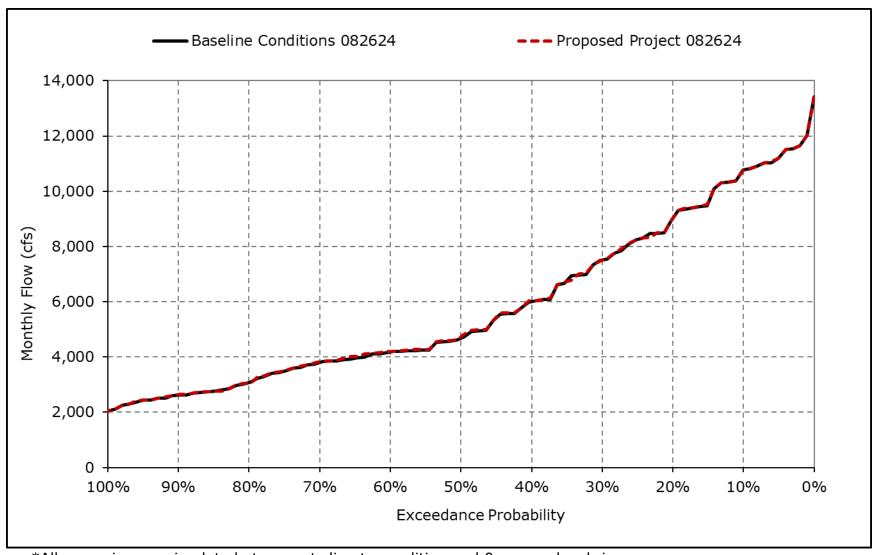

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2k. Georgiana Slough Flow, February

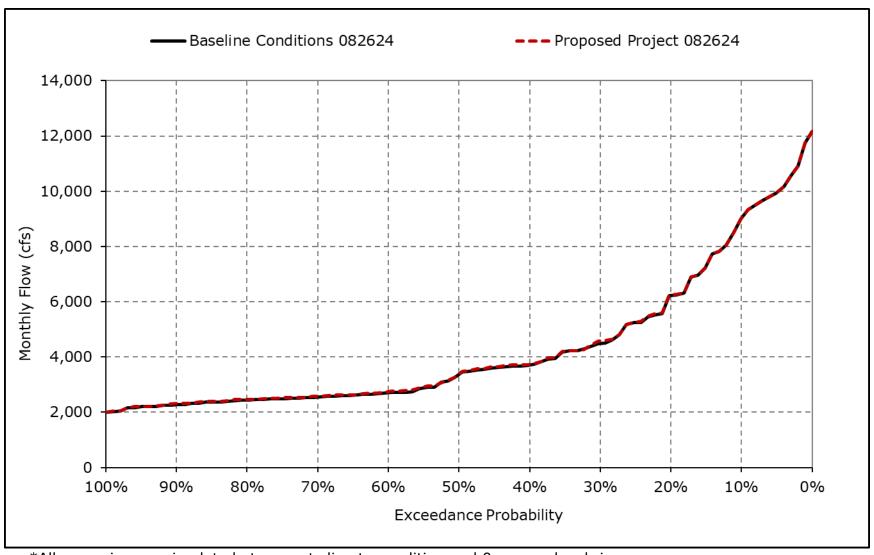

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2I. Georgiana Slough Flow, March

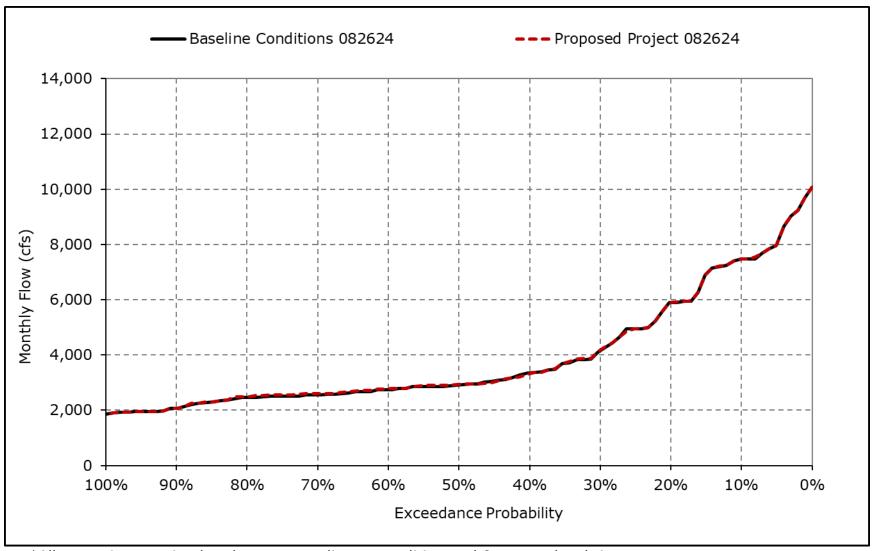

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2m. Georgiana Slough Flow, April

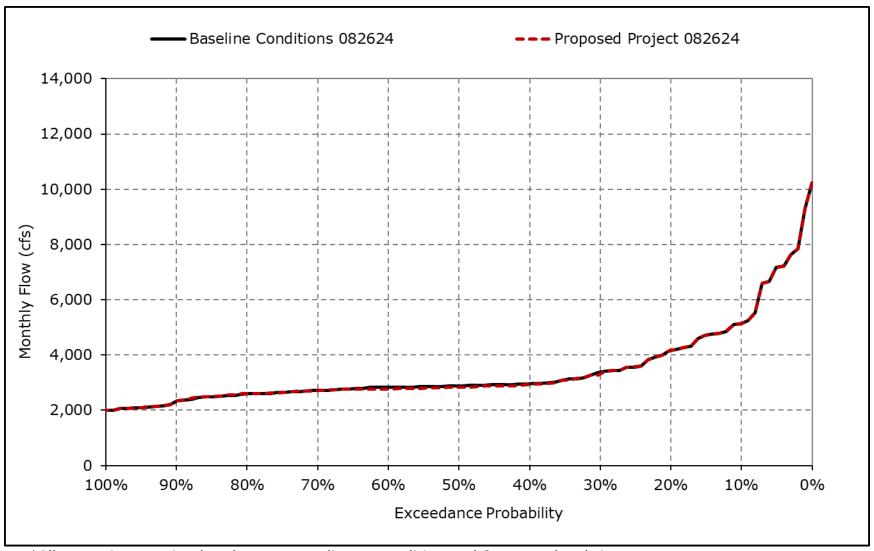

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2n. Georgiana Slough Flow, May

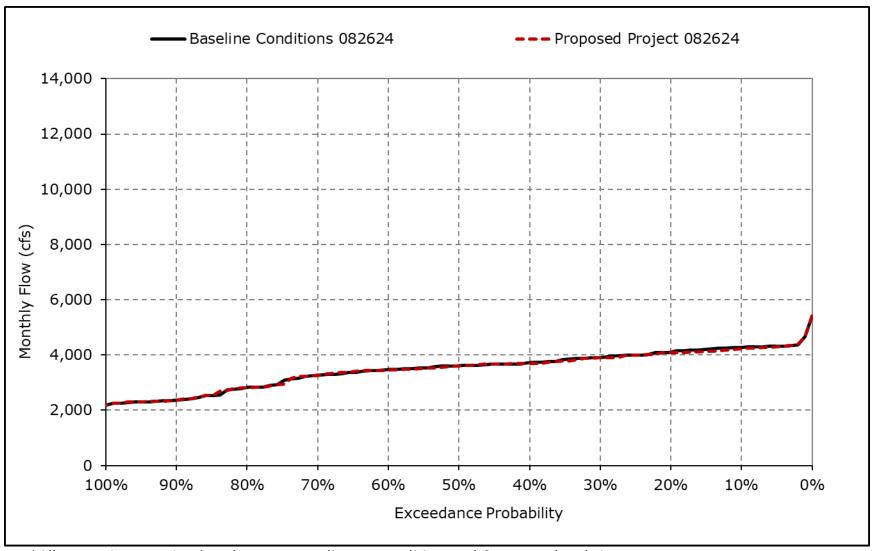

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2o. Georgiana Slough Flow, June

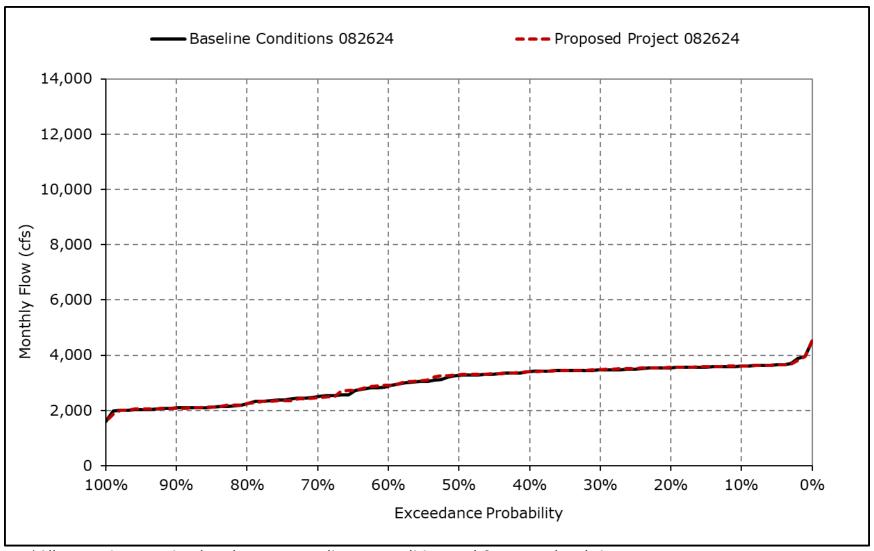

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2p. Georgiana Slough Flow, July

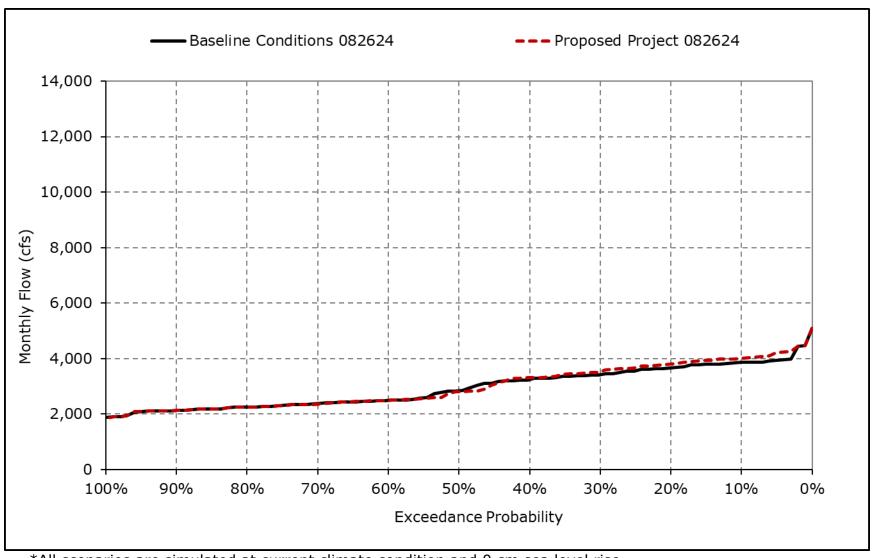

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2q. Georgiana Slough Flow, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-2r. Georgiana Slough Flow, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4B-2-3-1a. Yolo Bypass Flow, Baseline Conditions 082624, Monthly Flow (cfs)

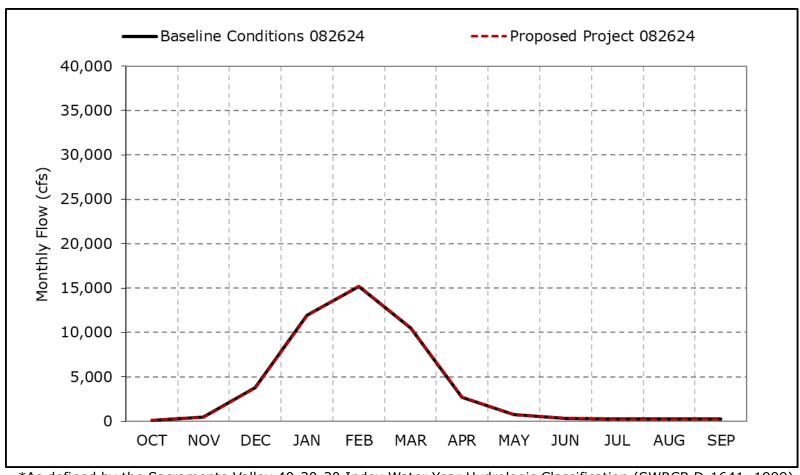
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	184	832	11,149	40,630	49,303	36,013	3,604	1,523	542	325	276	309
20% Exceedance	123	372	6,523	13,858	17,563	9,299	1,728	769	380	259	202	279
30% Exceedance	112	256	1,656	5,514	10,585	5,574	860	533	306	251	192	265
40% Exceedance	90	172	843	2,846	6,462	2,811	606	394	244	247	188	254
50% Exceedance	79	139	451	1,466	3,062	1,617	335	292	235	243	183	243
60% Exceedance	67	124	275	784	1,927	879	294	261	226	235	179	234
70% Exceedance	54	102	168	383	735	478	271	245	221	233	175	217
80% Exceedance	49	83	109	222	349	287	242	223	210	224	170	210
90% Exceedance	44	74	88	127	190	105	220	201	202	207	159	184
Full Simulation Period Average ^a	130	452	3,775	11,914	15,183	10,535	2,727	733	354	254	242	249
Wet Water Years (32%)	211	911	8,982	31,397	38,609	28,315	7,523	1,454	615	313	239	292
Above Normal Water Years (9%)	79	341	2,790	13,051	11,372	8,517	956	655	277	240	177	245
Below Normal Water Years (20%)	118	195	1,346	2,098	5,776	2,234	595	546	242	204	174	232
Dry Water Years (21%)	97	317	1,206	776	2,333	968	338	297	225	243	181	236
Critical Water Years (18%)	64	135	703	608	888	322	242	208	201	225	426	210

Table 4B-2-3-1b. Yolo Bypass Flow, Proposed Project 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	185	832	11,114	40,350	49,649	36,064	3,605	1,608	543	325	274	308
20% Exceedance	124	372	6,525	13,933	17,584	9,367	1,730	875	380	259	202	280
30% Exceedance	111	256	1,656	5,515	10,584	5,567	861	535	306	251	192	265
40% Exceedance	91	175	845	2,845	6,460	2,867	606	405	243	248	188	254
50% Exceedance	79	138	451	1,471	3,013	1,619	332	302	234	243	183	243
60% Exceedance	67	124	275	785	1,914	878	294	263	226	235	180	234
70% Exceedance	55	102	165	381	734	478	271	245	221	233	176	220
80% Exceedance	49	86	109	222	349	294	242	227	209	224	171	209
90% Exceedance	42	74	88	127	188	105	220	201	202	207	162	187
Full Simulation Period Average ^a	131	439	3,769	11,916	15,195	10,531	2,723	748	353	254	253	249
Wet Water Years (32%)	212	907	8,955	31,406	38,712	28,325	7,512	1,453	614	313	239	289
Above Normal Water Years (9%)	79	347	2,748	13,047	11,338	8,517	954	656	277	241	177	235
Below Normal Water Years (20%)	119	194	1,372	2,094	5,698	2,232	595	619	242	204	181	234
Dry Water Years (21%)	97	260	1,214	777	2,323	933	338	298	225	243	182	240
Critical Water Years (18%)	64	135	703	608	888	322	241	208	201	225	480	212

Table 4B-2-3-1c. Yolo Bypass Flow, Proposed Project 082624 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	1	-1	-35	-280	346	52	1	84	0	0	-1	-1
20% Exceedance	0	-1	2	75	20	68	2	105	1	0	0	0
30% Exceedance	-1	0	0	1	0	-8	1	3	0	0	0	1
40% Exceedance	1	3	2	-1	-2	57	-1	11	-1	0	0	0
50% Exceedance	0	-1	0	5	-48	2	-4	10	-1	0	1	0
60% Exceedance	0	0	0	0	-12	-1	0	2	0	0	1	0
70% Exceedance	1	0	-3	-3	0	0	0	0	0	0	1	2
80% Exceedance	0	3	0	0	0	7	0	4	0	0	1	-1
90% Exceedance	-2	0	0	0	-2	0	0	0	0	0	2	3
Full Simulation Period Average ^a	0	-13	-6	2	12	-5	-4	15	0	0	11	0
Wet Water Years (32%)	1	-5	-28	10	103	10	-11	-1	0	0	0	-3
Above Normal Water Years (9%)	0	6	-42	-4	-34	-1	-2	0	0	1	0	-10
Below Normal Water Years (20%)	0	0	25	-4	-78	-2	0	74	0	0	7	2
Dry Water Years (21%)	0	-57	7	1	-10	-35	0	1	0	0	0	5
Critical Water Years (18%)	0	1	0	0	0	0	0	0	0	0	55	2

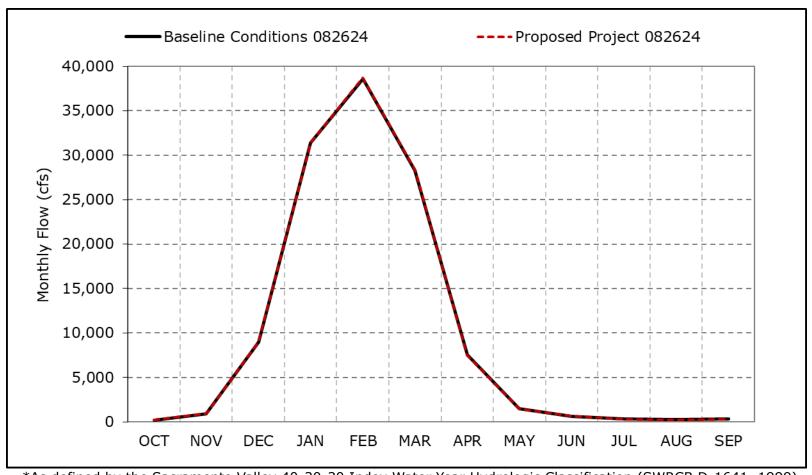

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*} Water Year Types results are displayed with water year - year type sorting.

Figure 4B-2-3a. Yolo Bypass Flow, Long-Term Average Flow

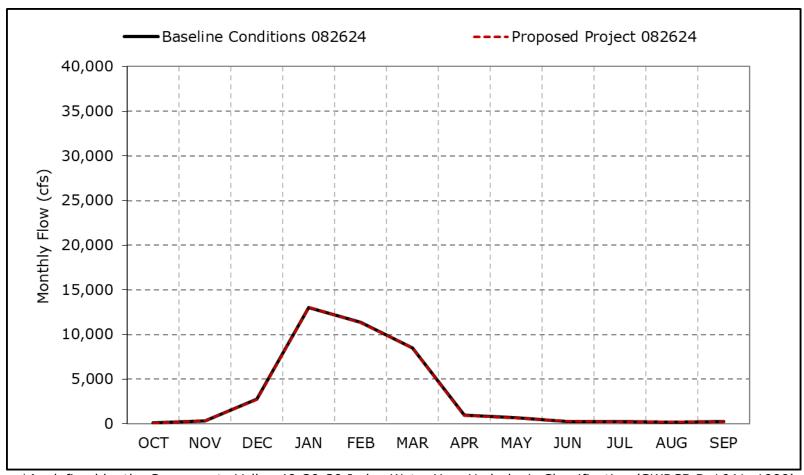


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3b. Yolo Bypass Flow, Wet Year Average Flow

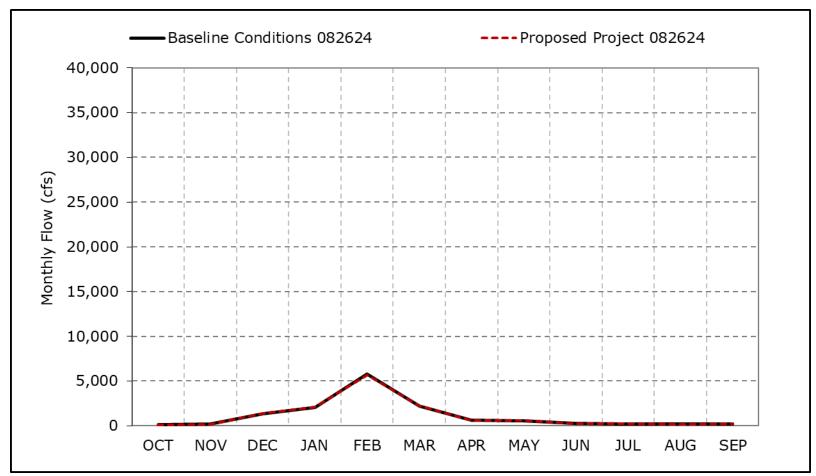


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3c. Yolo Bypass Flow, Above Normal Year Average Flow

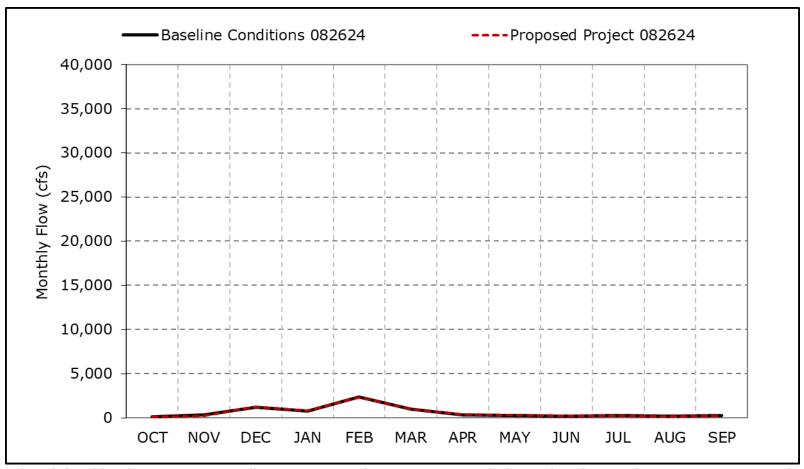


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3d. Yolo Bypass Flow, Below Normal Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

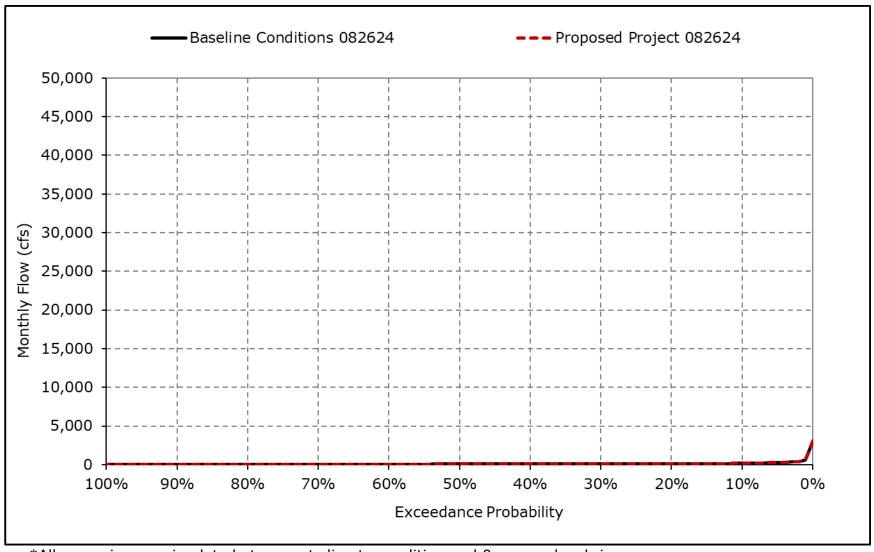
Figure 4B-2-3e. Yolo Bypass Flow, Dry Year Average Flow

^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3f. Yolo Bypass Flow, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

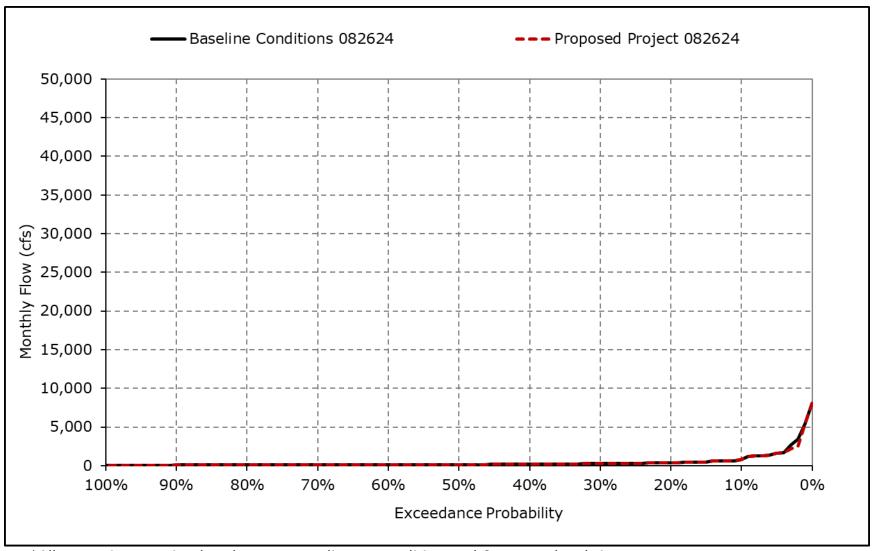

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3g. Yolo Bypass Flow, October

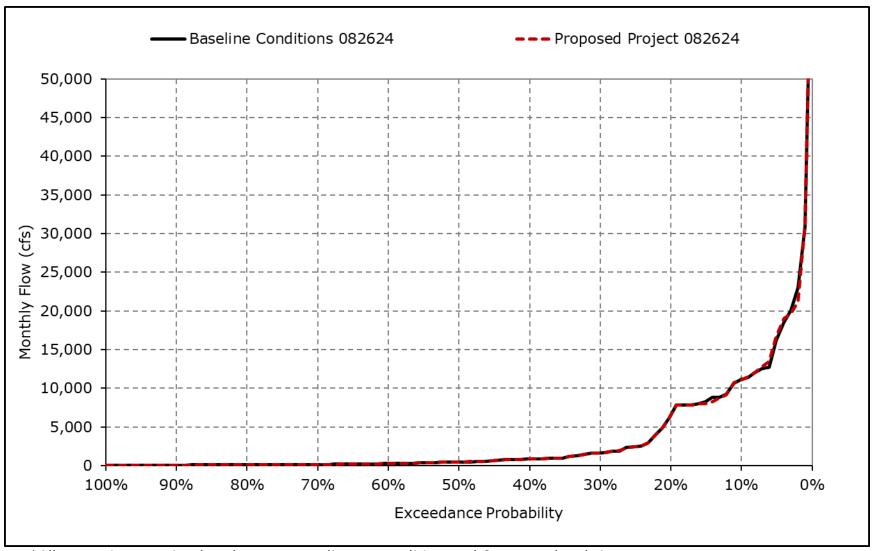

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3h. Yolo Bypass Flow, November

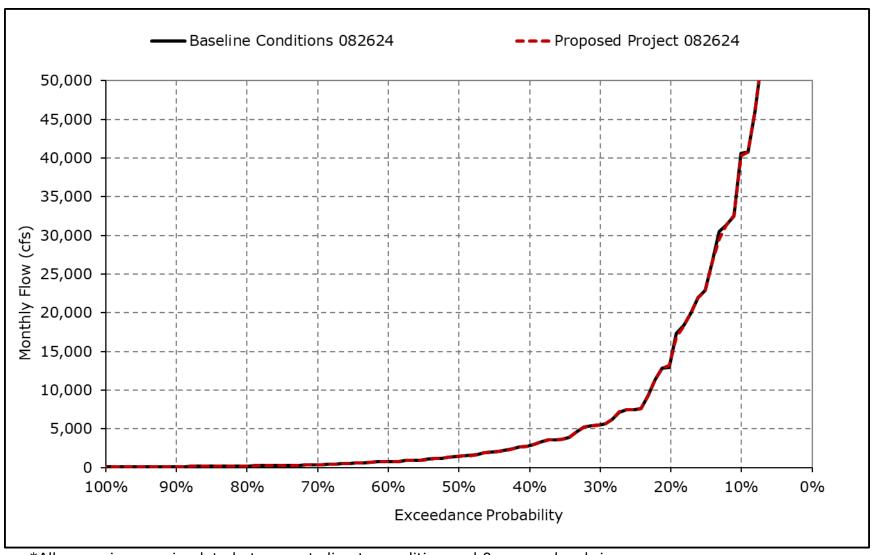

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3i. Yolo Bypass Flow, December

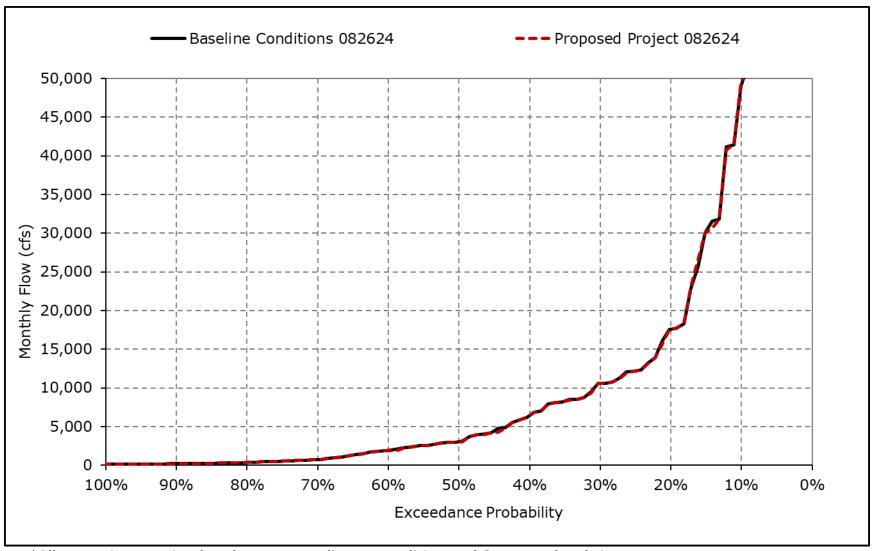

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3j. Yolo Bypass Flow, January

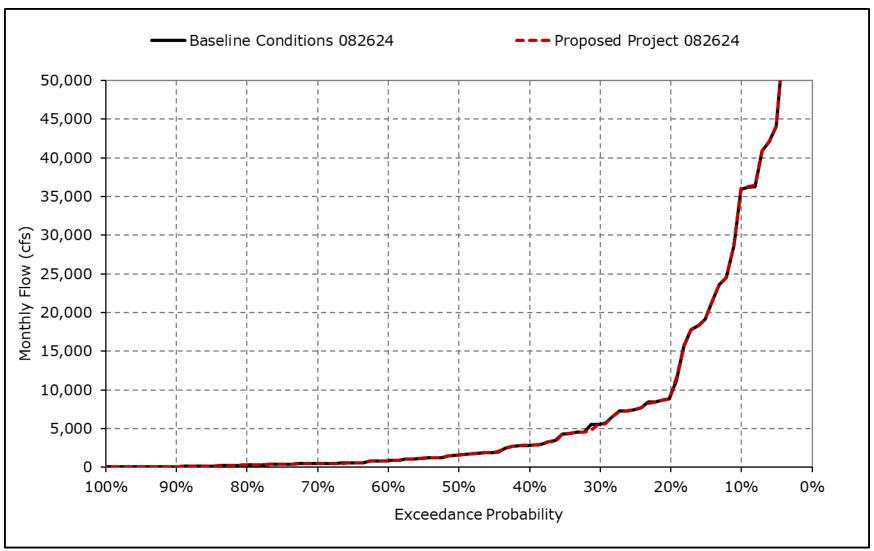

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3k. Yolo Bypass Flow, February

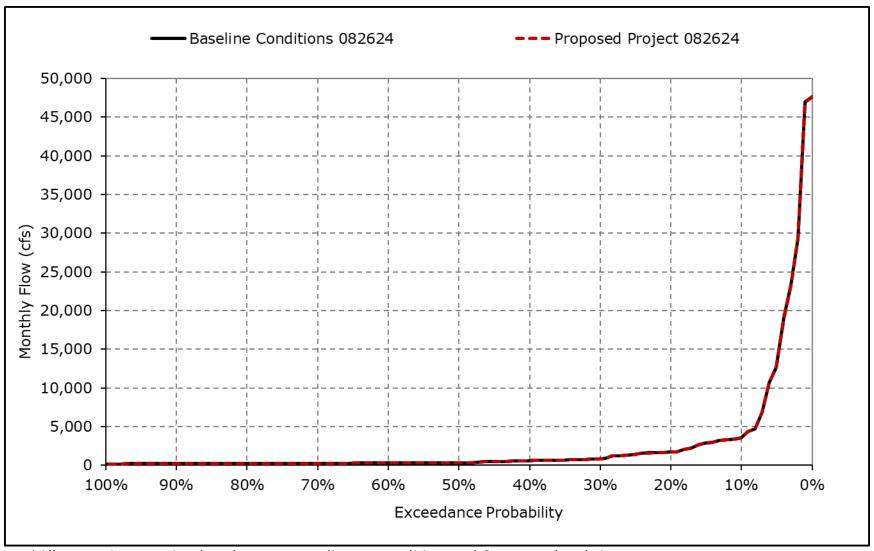

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3I. Yolo Bypass Flow, March

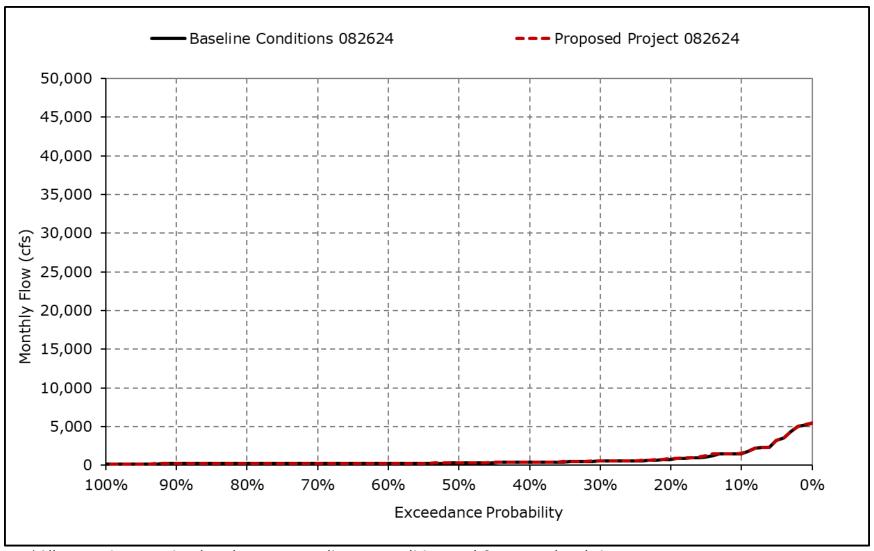

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3m. Yolo Bypass Flow, April

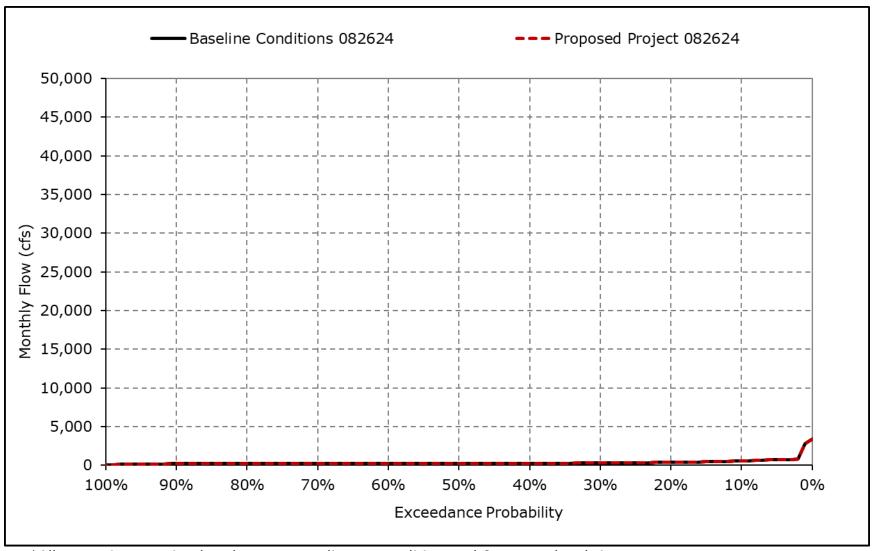

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3n. Yolo Bypass Flow, May

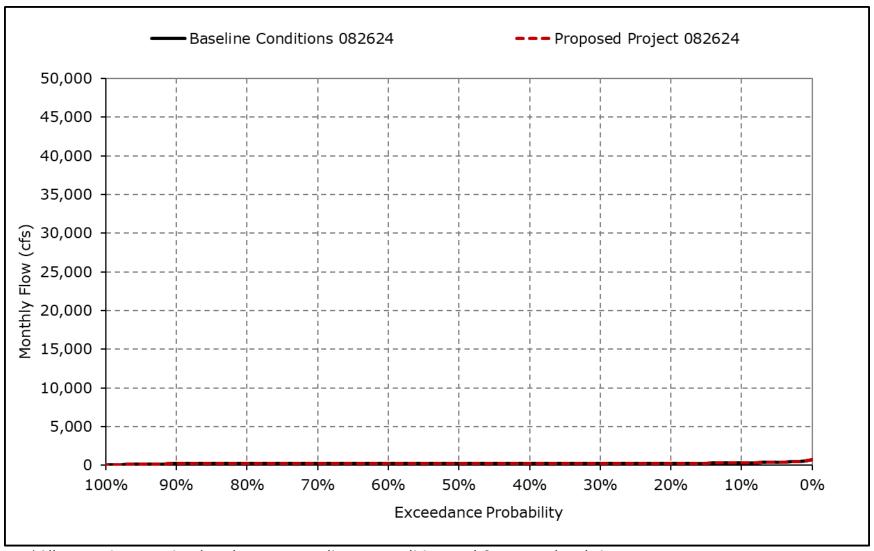

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3o. Yolo Bypass Flow, June

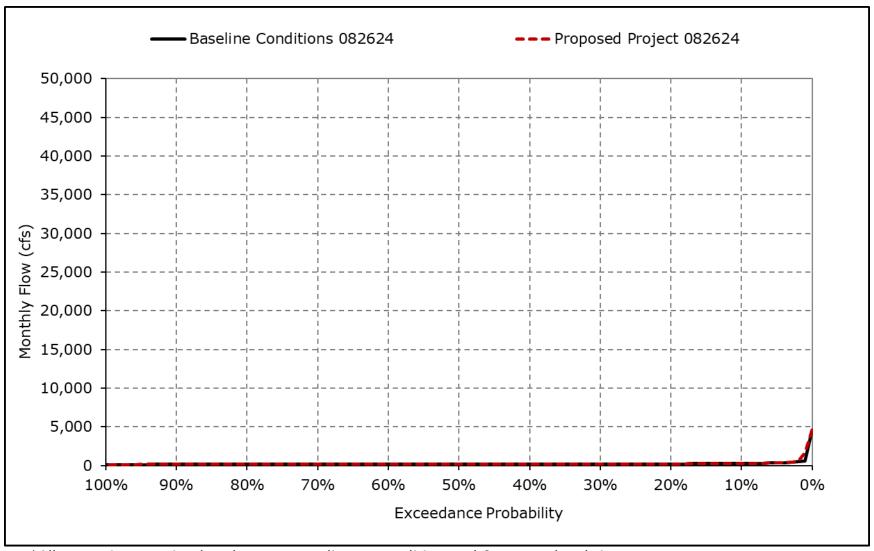

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3p. Yolo Bypass Flow, July

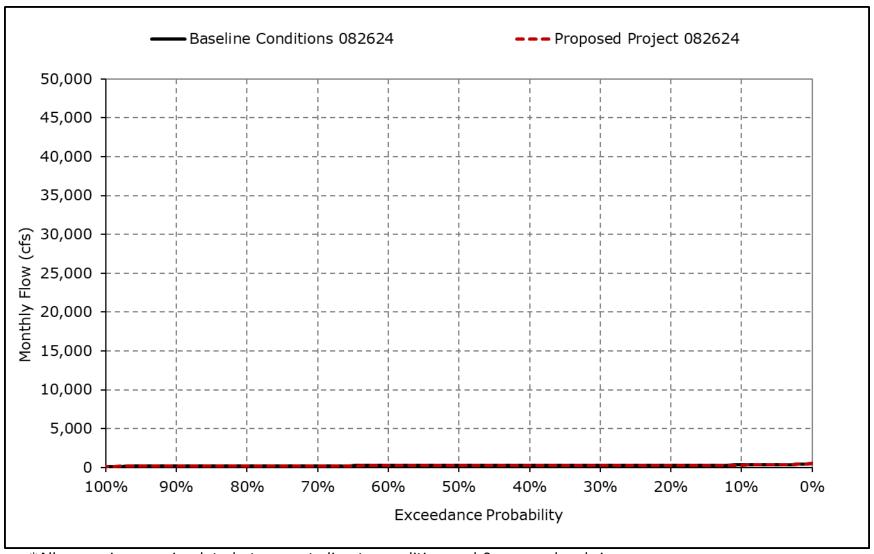

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3q. Yolo Bypass Flow, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-3r. Yolo Bypass Flow, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4B-2-4-1a. Sacramento River Flow at Rio Vista, Baseline Conditions 082624, Monthly Flow (cfs)

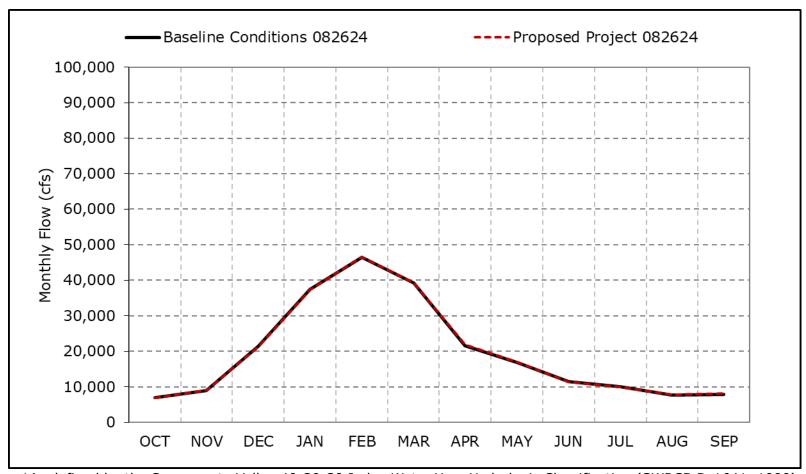
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	10,415	16,212	50,783	95,850	106,810	92,672	50,816	39,995	24,026	13,599	10,497	12,118
20% Exceedance	9,002	9,558	36,256	62,806	68,742	55,345	32,942	29,063	13,654	12,920	10,238	11,238
30% Exceedance	7,956	8,667	19,813	35,021	52,742	44,441	21,220	18,098	9,853	11,829	9,822	10,174
40% Exceedance	7,104	8,219	14,650	25,510	38,715	32,948	16,122	13,065	7,812	10,928	9,645	9,169
50% Exceedance	5,882	7,865	12,706	19,240	27,557	23,727	13,171	10,204	7,319	10,412	8,899	7,453
60% Exceedance	4,833	6,977	11,327	14,684	22,713	19,050	9,109	9,271	7,050	9,768	7,013	5,616
70% Exceedance	4,150	5,857	8,523	10,994	16,555	16,517	8,415	8,177	6,549	8,796	5,327	5,005
80% Exceedance	4,000	4,653	7,349	9,010	13,051	12,084	7,529	7,588	5,872	6,636	4,304	4,409
90% Exceedance	3,499	4,475	5,910	7,862	10,668	8,930	6,527	5,193	4,631	4,812	3,387	3,964
Full Simulation Period Average ^a	6,883	8,994	21,330	37,364	46,510	39,277	21,646	16,934	11,388	10,021	7,685	7,923
Wet Water Years (32%)	8,687	12,405	37,714	75,934	90,625	75,843	43,226	30,638	20,217	11,763	10,056	11,731
Above Normal Water Years (9%)	6,472	8,894	19,972	47,951	48,127	45,462	20,696	19,235	12,386	12,152	10,298	10,277
Below Normal Water Years (20%)	6,897	7,862	13,892	20,674	31,275	26,392	13,835	13,157	7,376	12,088	8,971	7,339
Dry Water Years (21%)	6,131	8,189	14,196	13,005	21,316	17,691	9,295	8,523	7,184	8,956	5,357	5,091
Critical Water Years (18%)	4,746	5,178	9,468	10,465	13,596	10,678	6,847	5,429	4,556	4,803	3,452	3,930

Table 4B-2-4-1b. Sacramento River Flow at Rio Vista, Proposed Project 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	10,430	15,686	50,747	95,341	107,203	92,703	50,807	40,001	24,025	13,371	10,511	12,874
20% Exceedance	9,025	9,576	36,293	62,799	68,759	55,342	33,096	29,075	13,657	12,739	10,299	11,892
30% Exceedance	7,798	8,655	20,092	35,038	52,585	44,361	21,479	18,273	9,659	11,754	9,878	10,619
40% Exceedance	7,012	8,220	14,681	25,489	38,695	33,188	16,431	12,975	7,580	10,869	9,582	9,517
50% Exceedance	5,864	7,867	12,741	19,249	27,558	24,154	13,346	10,381	6,999	10,464	8,994	7,132
60% Exceedance	4,776	6,918	10,938	14,578	22,700	19,144	9,463	9,522	6,795	9,717	7,229	5,622
70% Exceedance	4,106	5,810	8,717	11,186	16,651	16,749	8,569	8,403	6,451	8,887	5,081	5,014
80% Exceedance	4,000	4,657	7,408	9,034	13,049	11,849	7,635	7,746	5,895	6,598	4,119	4,407
90% Exceedance	3,494	4,475	6,280	7,632	10,598	9,100	6,782	5,194	4,639	4,715	3,375	3,952
Full Simulation Period Average ^a	6,847	8,968	21,334	37,351	46,466	39,363	21,779	17,018	11,331	9,961	7,734	8,116
Wet Water Years (32%)	8,608	12,371	37,740	75,940	90,704	75,852	43,216	30,636	20,222	11,737	10,096	12,274
Above Normal Water Years (9%)	6,411	8,799	19,914	47,927	48,048	45,684	20,848	19,405	12,384	12,133	10,170	11,341
Below Normal Water Years (20%)	6,824	7,846	13,999	20,600	31,139	26,599	14,204	13,199	7,304	11,793	9,234	6,964
Dry Water Years (21%)	6,153	8,164	14,112	13,030	21,166	17,839	9,539	8,805	6,923	9,015	5,297	5,103
Critical Water Years (18%)	4,768	5,186	9,452	10,451	13,575	10,627	6,832	5,441	4,615	4,785	3,494	3,909

Table 4B-2-4-1c. Sacramento River Flow at Rio Vista, Proposed Project 082624 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	15	-526	-36	-509	393	31	-9	6	-1	-228	14	756
20% Exceedance	23	18	36	-7	17	-4	153	12	4	-181	61	654
30% Exceedance	-158	-12	278	17	-157	-80	259	175	-195	-76	57	445
40% Exceedance	-91	1	31	-21	-20	240	308	-90	-232	-59	-63	348
50% Exceedance	-17	2	35	9	2	427	176	177	-320	52	96	-321
60% Exceedance	-57	-60	-389	-107	-13	94	354	251	-255	-50	216	6
70% Exceedance	-45	-47	193	192	96	232	154	226	-98	90	-246	10
80% Exceedance	0	4	59	24	-2	-234	106	158	23	-39	-185	-2
90% Exceedance	-5	0	370	-230	-70	170	255	1	8	-97	-13	-11
Full Simulation Period Average ^a	-37	-26	4	-12	-44	86	133	84	-57	-60	49	193
Wet Water Years (32%)	-79	-34	26	6	79	9	-10	-2	5	-25	40	544
Above Normal Water Years (9%)	-61	-95	-58	-25	-78	222	153	171	-1	-18	-127	1,064
Below Normal Water Years (20%)	-73	-15	107	-74	-136	208	369	42	-72	-296	263	-375
Dry Water Years (21%)	23	-26	-84	25	-150	148	245	282	-261	59	-60	11
Critical Water Years (18%)	21	8	-16	-14	-21	-51	-14	12	59	-18	42	-20

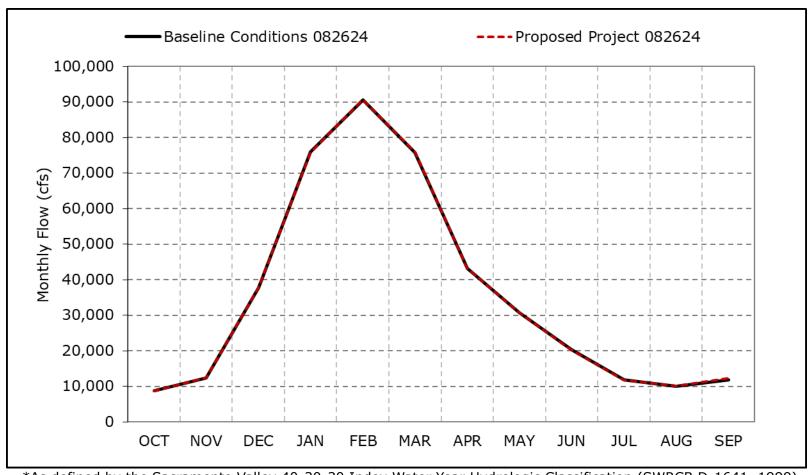

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 $[\]ensuremath{^{*}}$ Water Year Types results are displayed with water year - year type sorting.

Figure 4B-2-4a. Sacramento River Flow at Rio Vista, Long-Term Average Flow

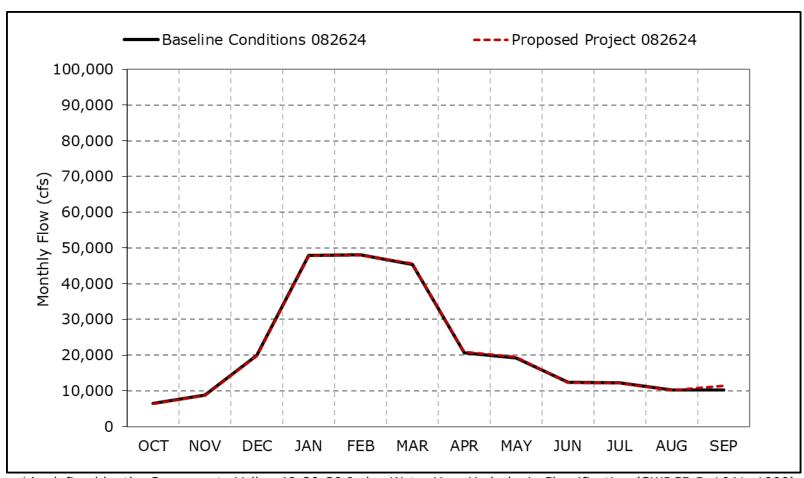


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4b. Sacramento River Flow at Rio Vista, Wet Year Average Flow

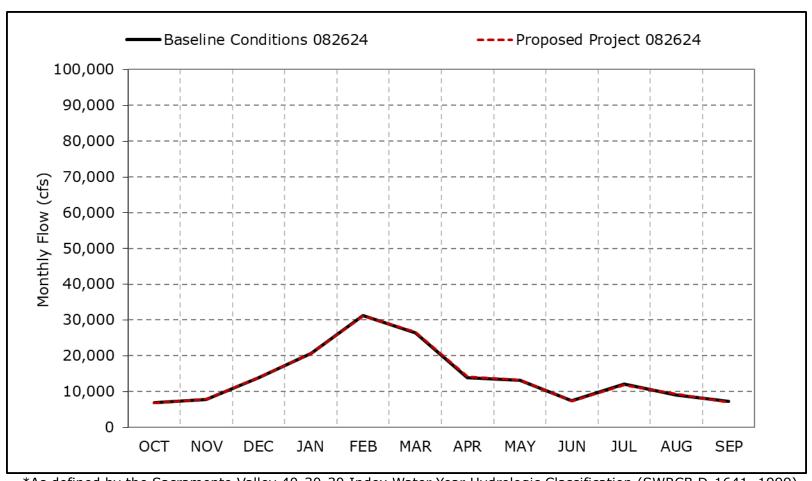


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4c. Sacramento River Flow at Rio Vista, Above Normal Year Average Flow

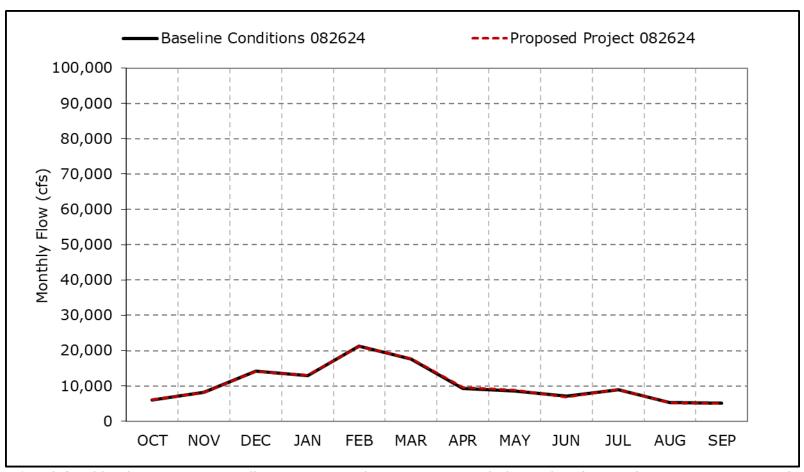


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4d. Sacramento River Flow at Rio Vista, Below Normal Year Average Flow

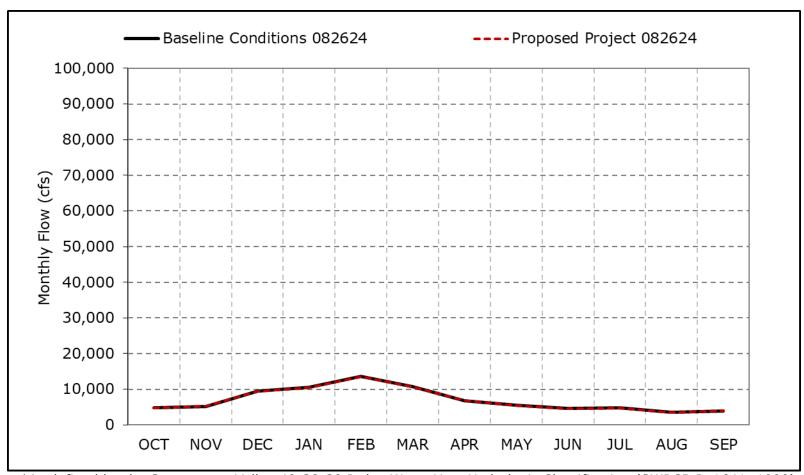


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4e. Sacramento River Flow at Rio Vista, Dry Year Average Flow

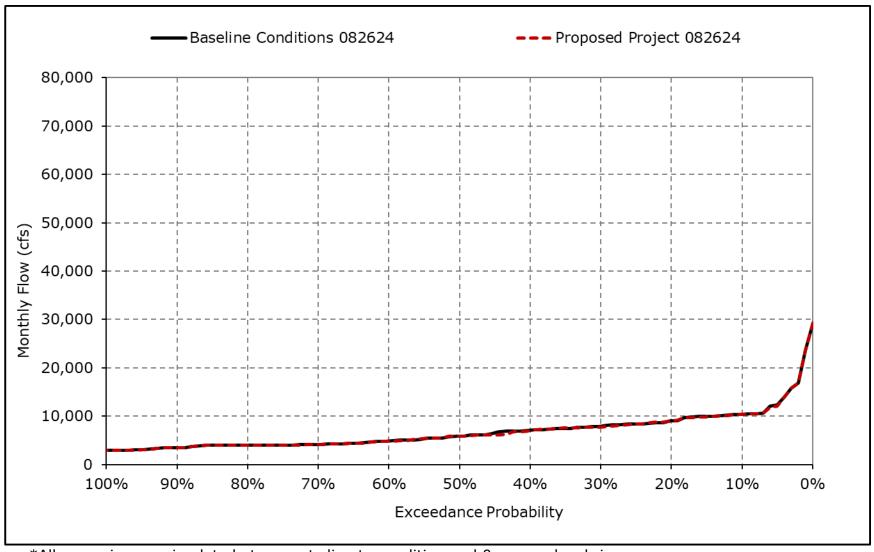


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4f. Sacramento River Flow at Rio Vista, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

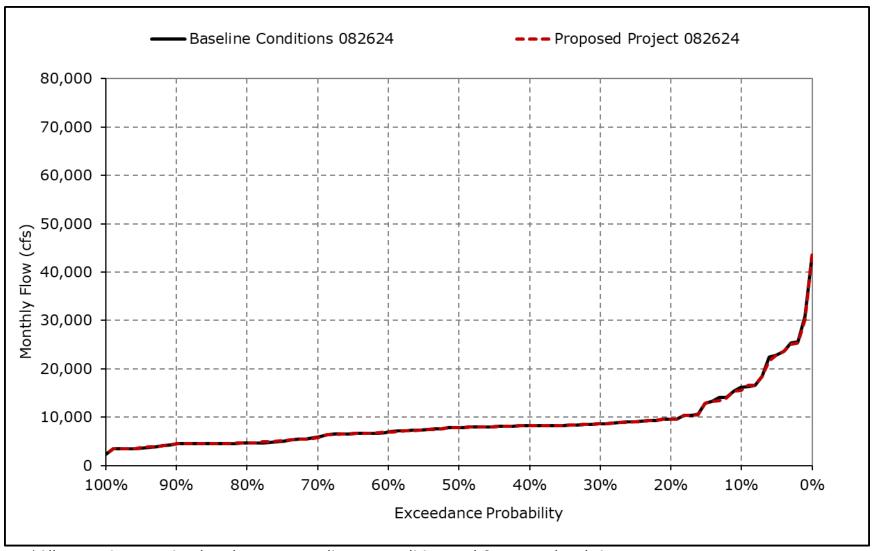

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4g. Sacramento River Flow at Rio Vista, October

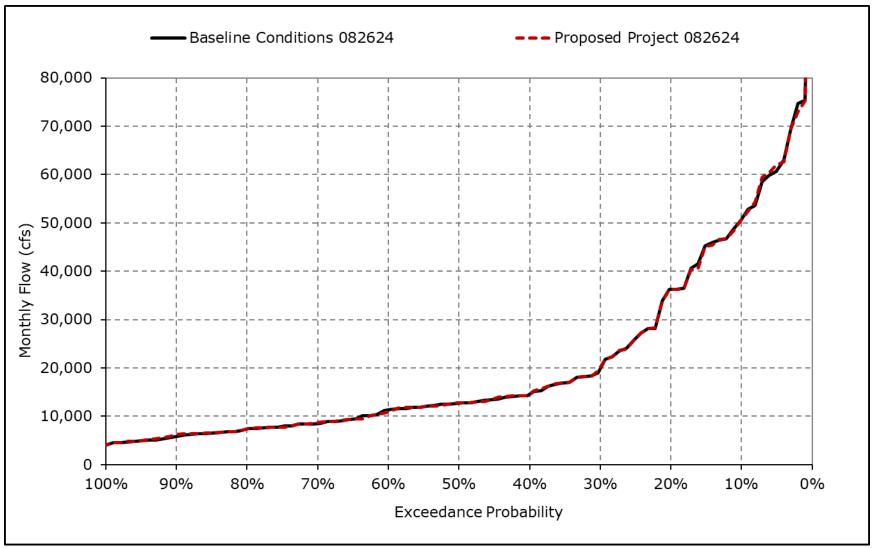

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4h. Sacramento River Flow at Rio Vista, November

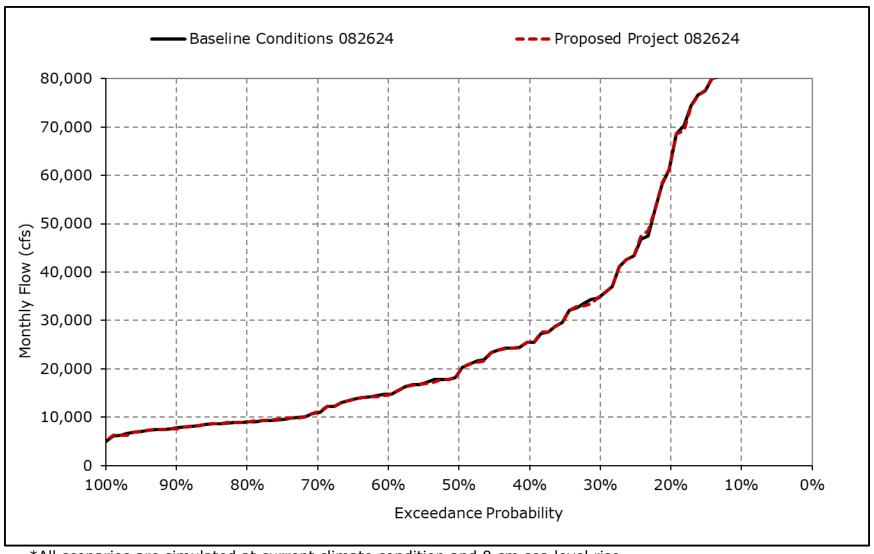

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4i. Sacramento River Flow at Rio Vista, December

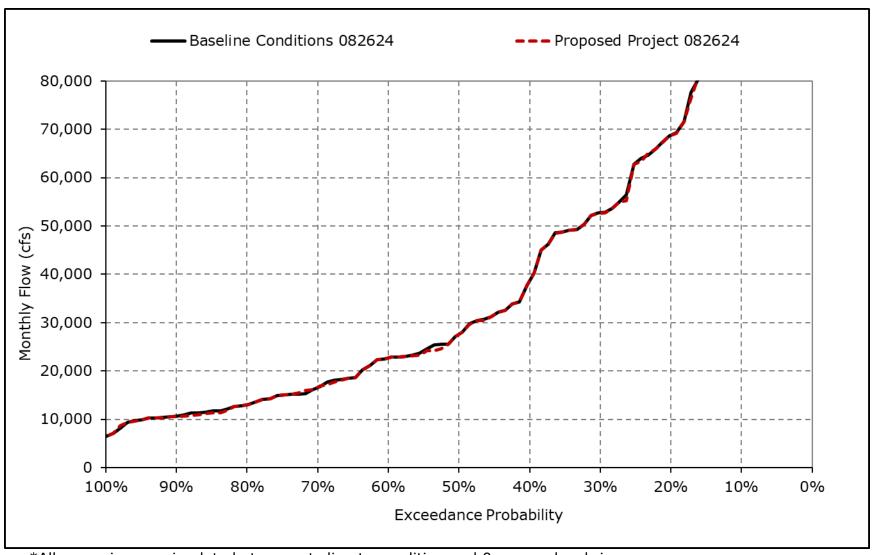

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4j. Sacramento River Flow at Rio Vista, January

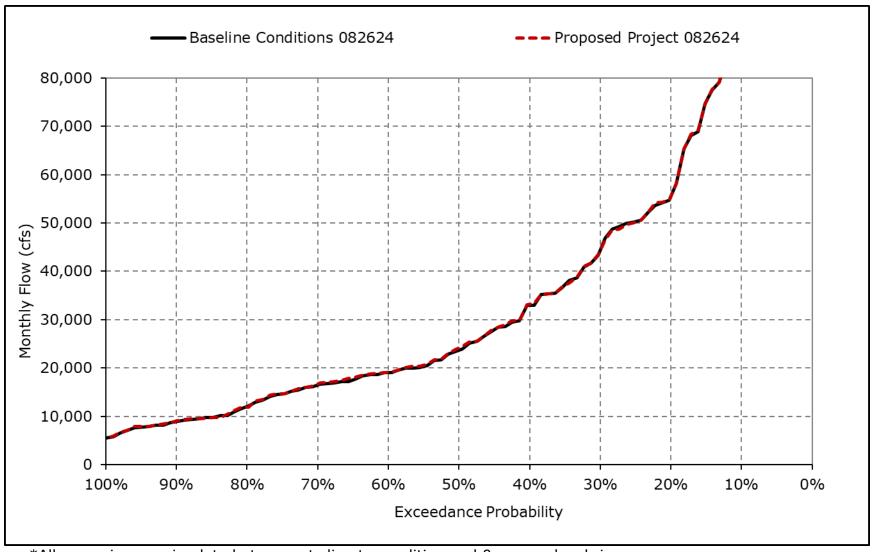

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4k. Sacramento River Flow at Rio Vista, February

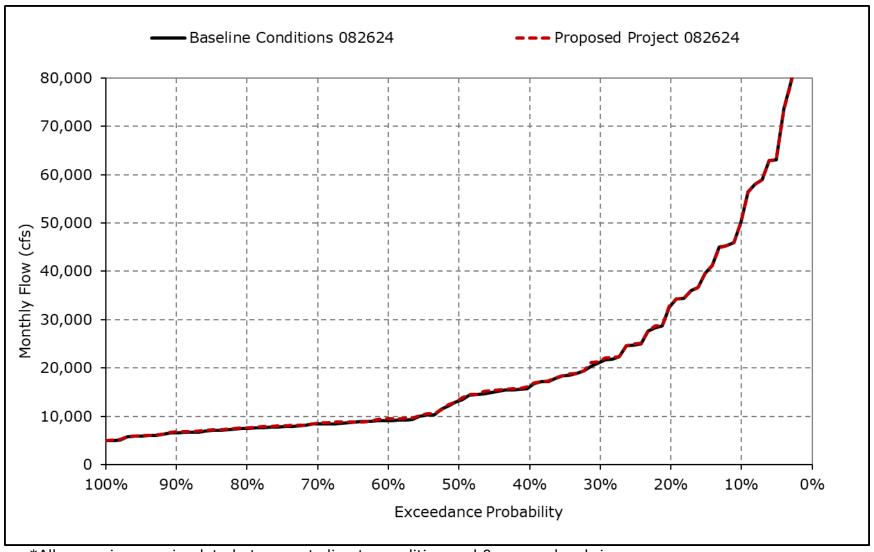

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4I. Sacramento River Flow at Rio Vista, March

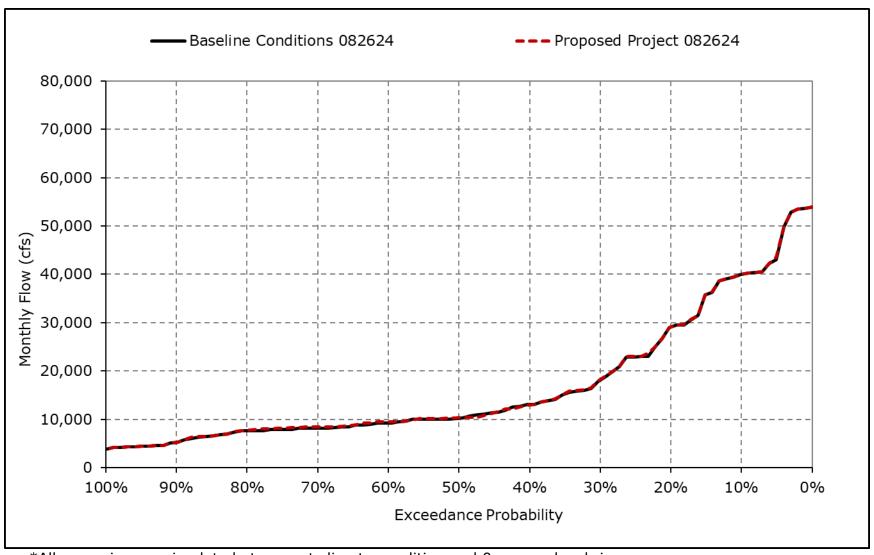

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4m. Sacramento River Flow at Rio Vista, April


^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4n. Sacramento River Flow at Rio Vista, May

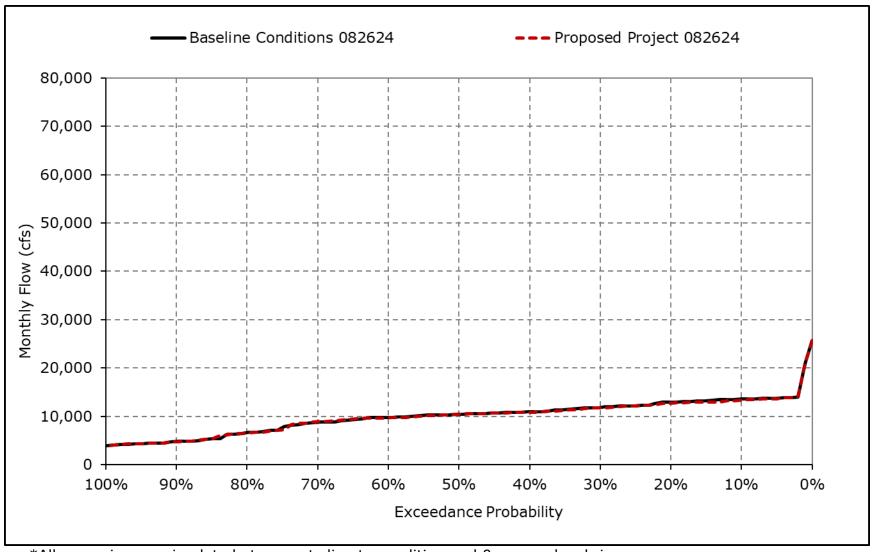

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4o. Sacramento River Flow at Rio Vista, June

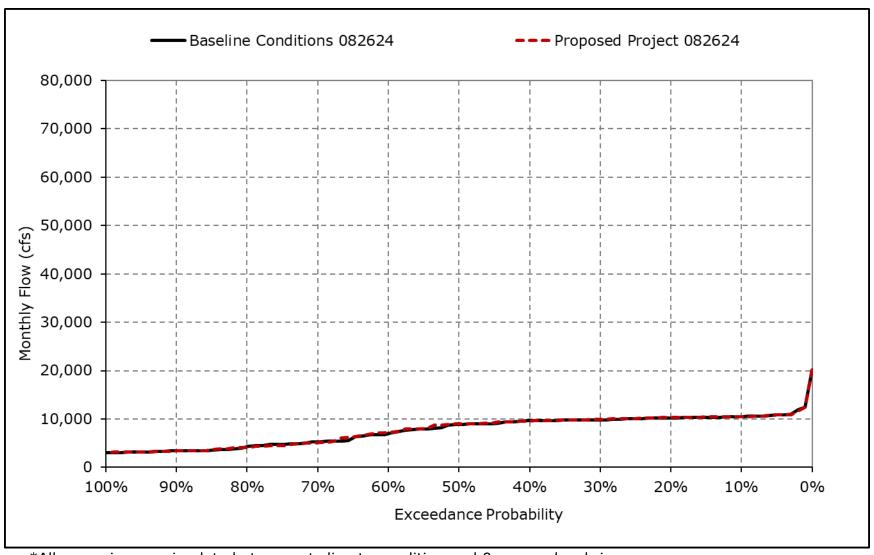

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4p. Sacramento River Flow at Rio Vista, July

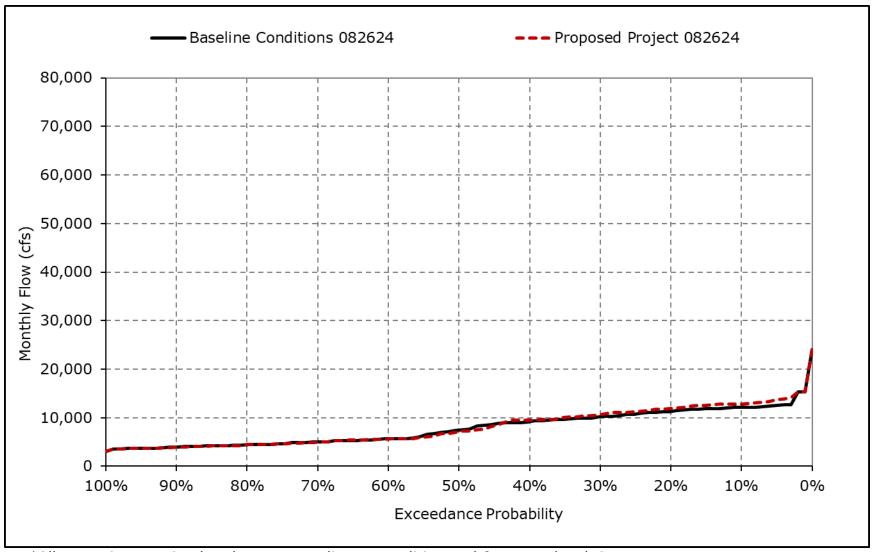

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4q. Sacramento River Flow at Rio Vista, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-4r. Sacramento River Flow at Rio Vista, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4B-2-5-1a. San Joaquin River at Vernalis, Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,975	2,642	3,876	9,369	11,402	13,581	14,413	12,125	13,329	6,337	4,759	3,781
20% Exceedance	3,678	2,321	2,521	4,272	7,952	8,982	10,005	7,943	6,530	3,765	2,198	2,041
30% Exceedance	3,191	2,055	2,062	3,284	5,398	7,366	8,101	6,118	3,235	1,940	1,332	1,439
40% Exceedance	2,278	1,883	1,772	2,333	3,585	4,248	6,279	5,019	2,493	1,483	1,072	1,267
50% Exceedance	1,843	1,714	1,571	1,963	2,681	2,533	3,922	3,742	1,747	1,152	759	1,044
60% Exceedance	1,747	1,432	1,399	1,591	2,179	2,285	3,172	3,122	1,490	937	689	966
70% Exceedance	1,684	1,371	1,298	1,476	1,832	1,887	2,754	2,762	1,249	807	617	909
80% Exceedance	1,592	1,332	1,158	1,338	1,605	1,713	2,438	2,415	1,141	618	506	827
90% Exceedance	1,466	1,239	1,077	1,202	1,458	1,613	2,146	2,070	929	487	355	657
Full Simulation Period Average ^a	2,537	1,919	2,287	4,074	5,550	5,941	6,711	5,825	4,240	2,498	1,578	1,548
Wet Water Years (32%)	2,934	2,362	3,715	8,706	11,277	12,158	12,523	10,643	9,314	5,542	3,374	2,710
Above Normal Water Years (9%)	2,280	1,829	1,932	2,763	4,920	5,448	6,611	5,518	3,535	1,941	1,220	1,438
Below Normal Water Years (20%)	2,764	1,974	1,783	2,217	3,929	4,287	5,523	4,782	2,485	1,435	936	1,158
Dry Water Years (21%)	2,358	1,650	1,552	1,581	1,871	1,905	2,766	2,723	1,284	818	622	922
Critical Water Years (18%)	1,916	1,430	1,341	1,468	1,779	1,682	2,353	2,189	973	506	394	702

Table 4B-2-5-1b. San Joaquin River at Vernalis, Proposed Project 082624, Monthly Flow (cfs)

	_			-	-		-		-	_	-	-
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,971	2,639	3,873	9,358	11,399	13,578	14,414	12,119	13,322	6,335	4,758	3,779
20% Exceedance	3,675	2,319	2,519	4,244	7,950	8,982	10,002	7,940	6,529	3,762	2,196	2,040
30% Exceedance	3,191	2,052	2,060	3,282	5,395	7,364	8,098	6,112	3,232	1,939	1,328	1,434
40% Exceedance	2,276	1,882	1,770	2,330	3,584	4,244	6,277	5,015	2,493	1,480	1,070	1,264
50% Exceedance	1,839	1,711	1,567	1,963	2,678	2,530	3,920	3,736	1,742	1,143	756	1,047
60% Exceedance	1,737	1,430	1,395	1,589	2,177	2,282	3,169	3,115	1,482	931	682	964
70% Exceedance	1,681	1,380	1,295	1,474	1,831	1,884	2,751	2,758	1,245	808	604	902
80% Exceedance	1,572	1,331	1,154	1,336	1,603	1,708	2,435	2,406	1,140	605	486	822
90% Exceedance	1,473	1,229	1,079	1,201	1,460	1,611	2,144	2,068	912	490	357	658
Full Simulation Period Average ^a	2,535	1,917	2,284	4,069	5,546	5,937	6,708	5,821	4,236	2,493	1,574	1,546
Wet Water Years (32%)	2,929	2,357	3,710	8,696	11,272	12,152	12,519	10,639	9,310	5,538	3,371	2,708
Above Normal Water Years (9%)	2,279	1,831	1,932	2,753	4,910	5,441	6,607	5,513	3,531	1,936	1,214	1,433
Below Normal Water Years (20%)	2,770	1,975	1,781	2,215	3,927	4,284	5,520	4,777	2,480	1,429	930	1,154
Dry Water Years (21%)	2,355	1,648	1,550	1,579	1,869	1,902	2,762	2,718	1,280	812	616	924
Critical Water Years (18%)	1,913	1,429	1,339	1,466	1,776	1,680	2,351	2,188	969	500	392	699

Table 4B-2-5-1c. San Joaquin River at Vernalis, Proposed Project 082624 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-4	-2	-3	-11	-2	-3	1	-6	-7	-2	-1	-2
20% Exceedance	-3	-2	-3	-28	-2	-1	-2	-3	-1	-3	-2	-1
30% Exceedance	0	-3	-2	-2	-3	-2	-3	-6	-2	-1	-3	-5
40% Exceedance	-2	-2	-1	-3	-1	-4	-3	-4	-1	-3	-3	-3
50% Exceedance	-4	-3	-3	0	-3	-3	-2	-6	-5	-9	-4	3
60% Exceedance	-10	-2	-4	-2	-2	-2	-4	-7	-8	-6	-7	-2
70% Exceedance	-3	9	-3	-2	-1	-4	-3	-4	-4	1	-13	-8
80% Exceedance	-20	-1	-4	-3	-2	-5	-3	-9	-1	-13	-20	-6
90% Exceedance	8	-9	2	-1	1	-2	-2	-3	-17	2	2	1
Full Simulation Period Average ^a	-1	-2	-2	-6	-4	-4	-3	-4	-4	-5	-4	-2
Wet Water Years (32%)	-5	-5	-5	-11	-4	-7	-3	-4	-4	-4	-3	-2
Above Normal Water Years (9%)	0	1	0	-10	-10	-7	-4	-5	-4	-5	-6	-6
Below Normal Water Years (20%)	6	1	-1	-3	-2	-2	-3	-4	-5	-6	-5	-4
Dry Water Years (21%)	-3	-2	-2	-2	-2	-3	-4	-4	-4	-5	-6	2
Critical Water Years (18%)	-2	-1	-1	-1	-3	-2	-2	-1	-3	-5	-2	-3

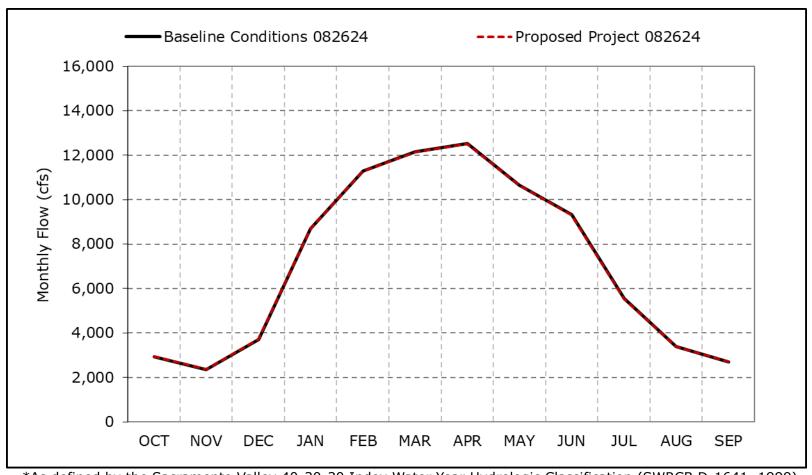
^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 $[\]ensuremath{^{*}}$ Water Year Types results are displayed with water year - year type sorting.

Figure 4B-2-5a. San Joaquin River at Vernalis, Long-Term Average Flow

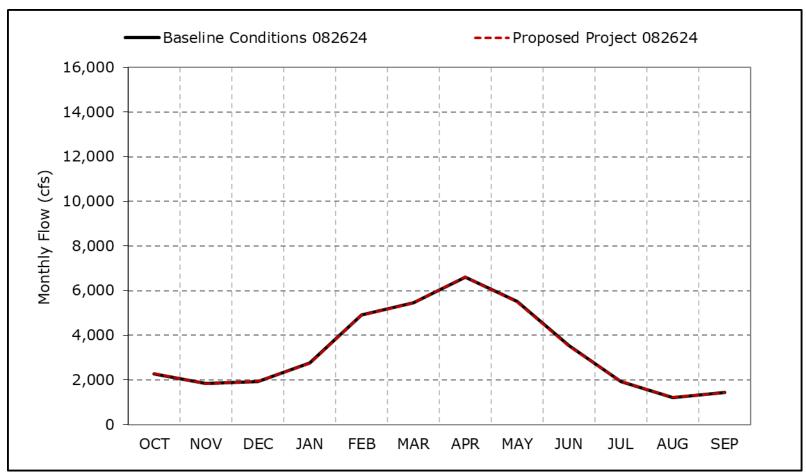


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5b. San Joaquin River at Vernalis, Wet Year Average Flow

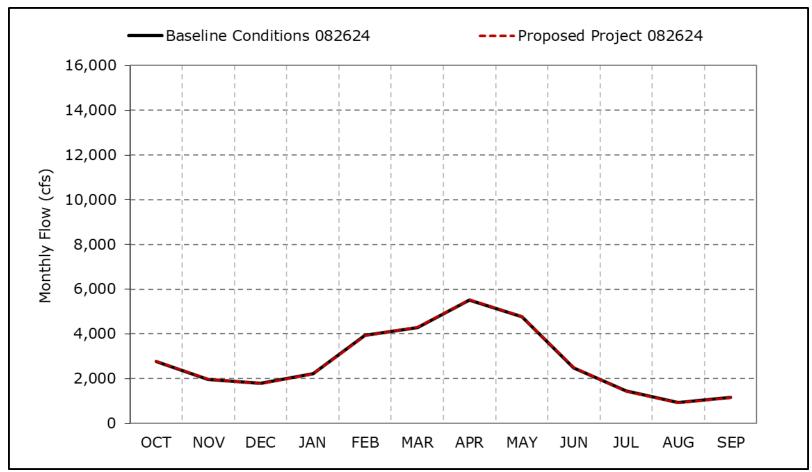


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5c. San Joaquin River at Vernalis, Above Normal Year Average Flow

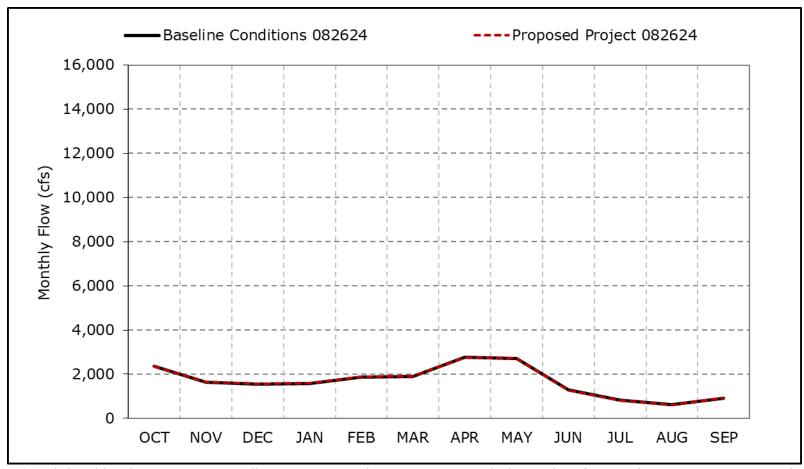


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5d. San Joaquin River at Vernalis, Below Normal Year Average Flow

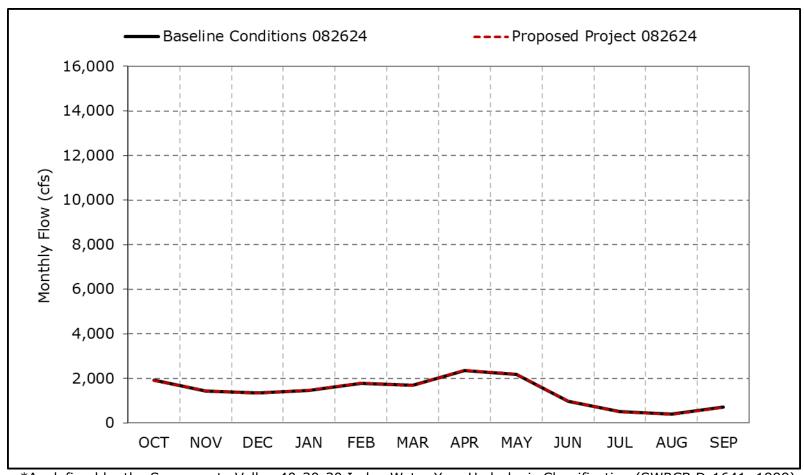


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5e. San Joaquin River at Vernalis, Dry Year Average Flow

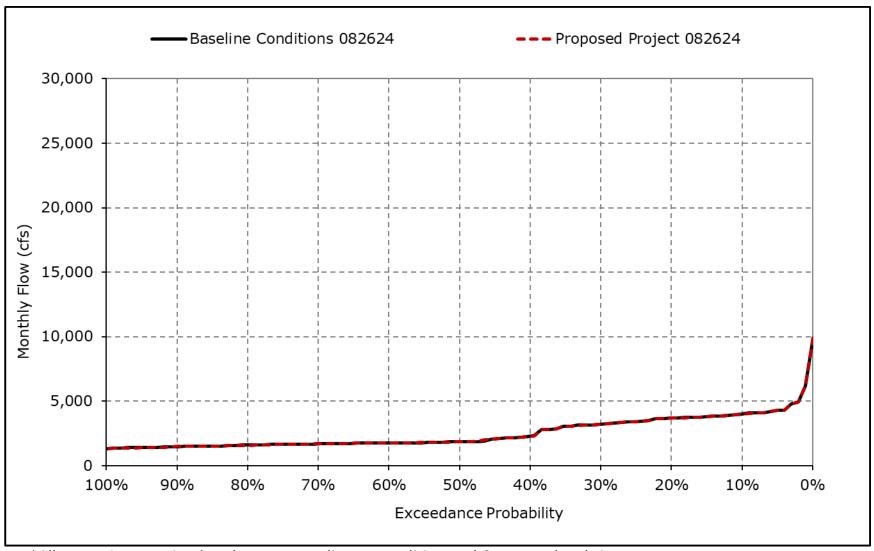


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5f. San Joaquin River at Vernalis, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.


^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5g. San Joaquin River at Vernalis, October

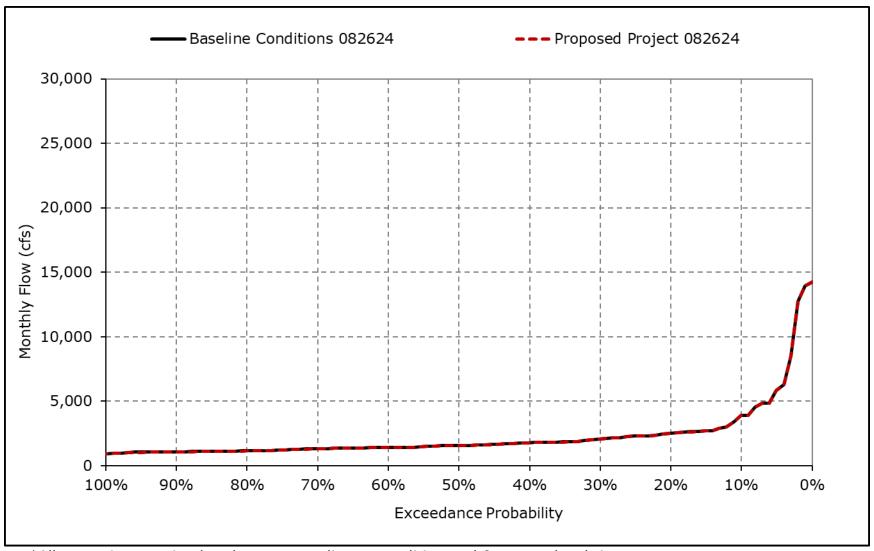

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5h. San Joaquin River at Vernalis, November

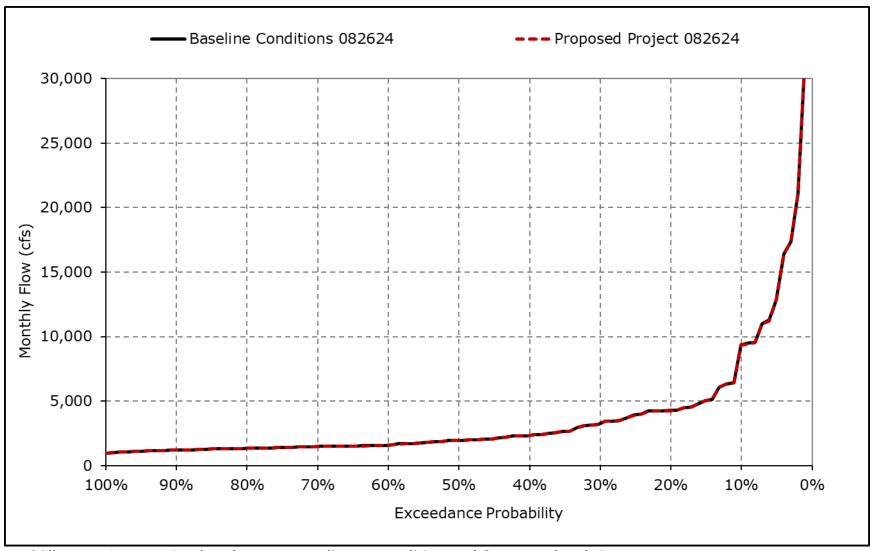

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5i. San Joaquin River at Vernalis, December

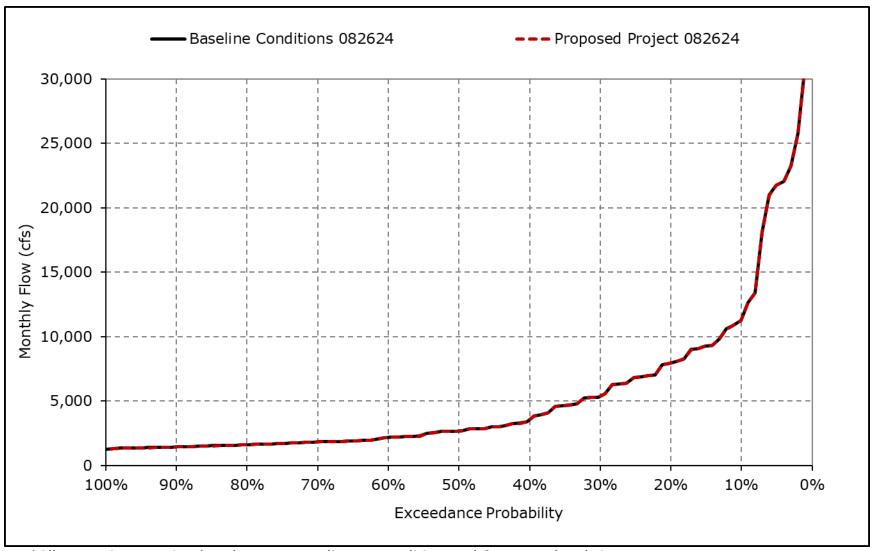

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5j. San Joaquin River at Vernalis, January

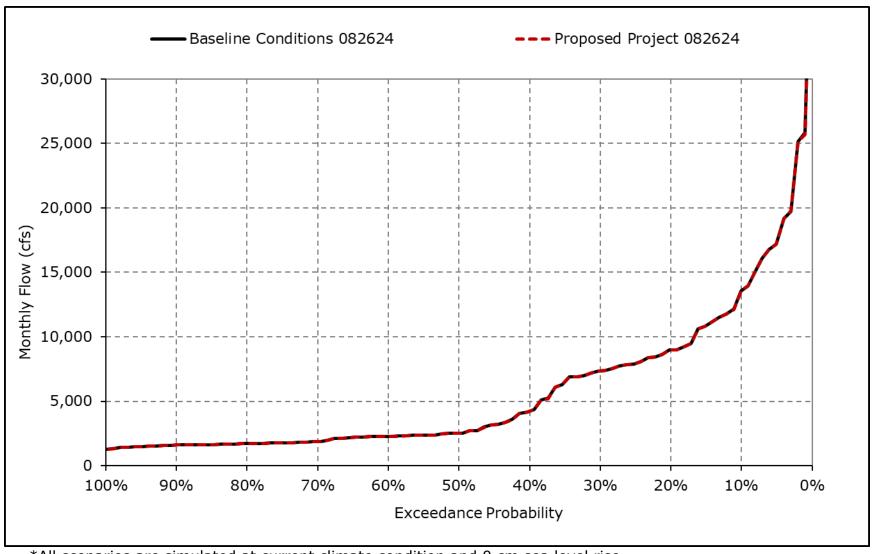

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5k. San Joaquin River at Vernalis, February

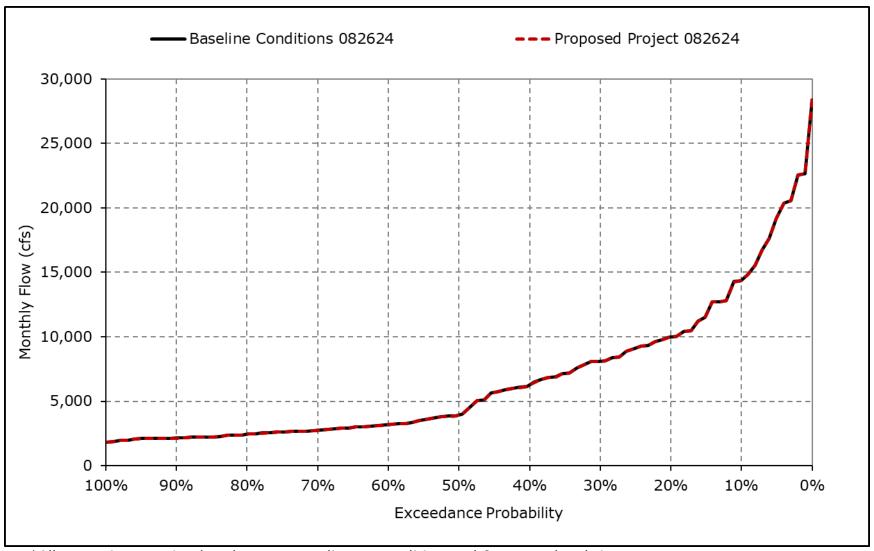

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5I. San Joaquin River at Vernalis, March

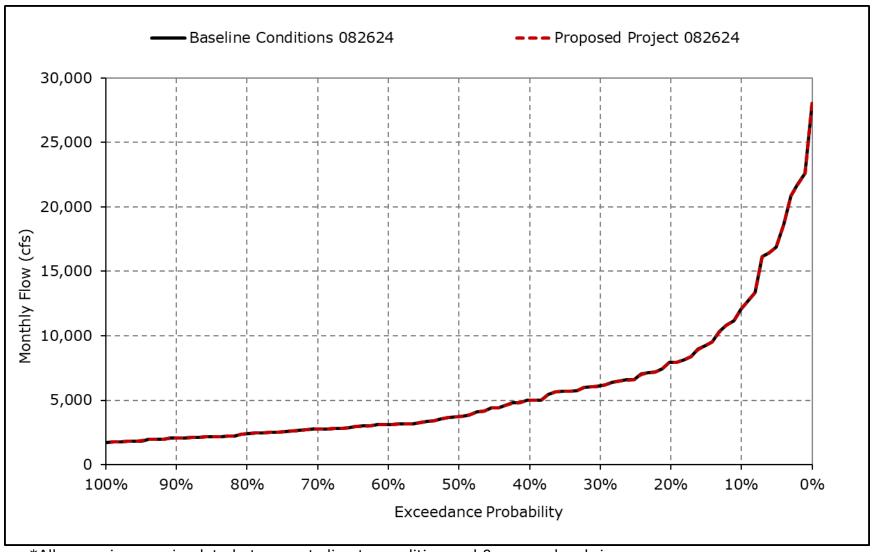

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5m. San Joaquin River at Vernalis, April

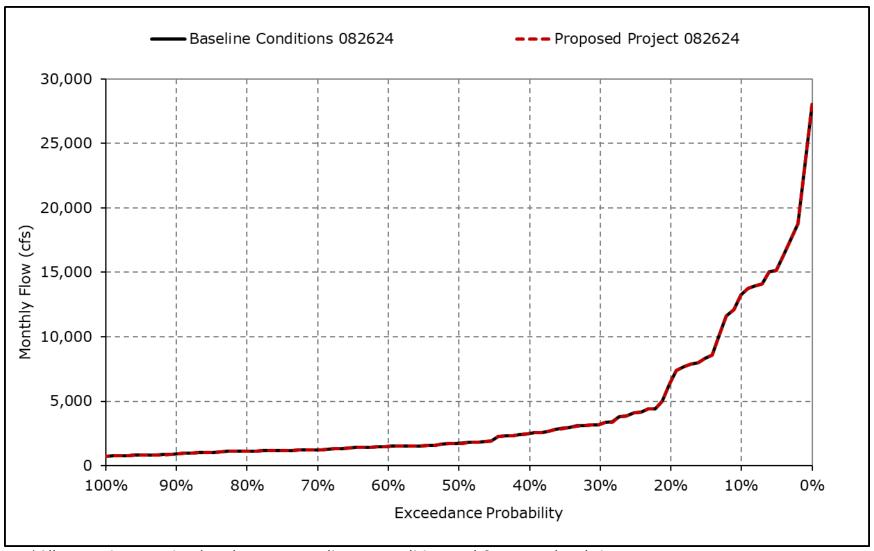

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5n. San Joaquin River at Vernalis, May

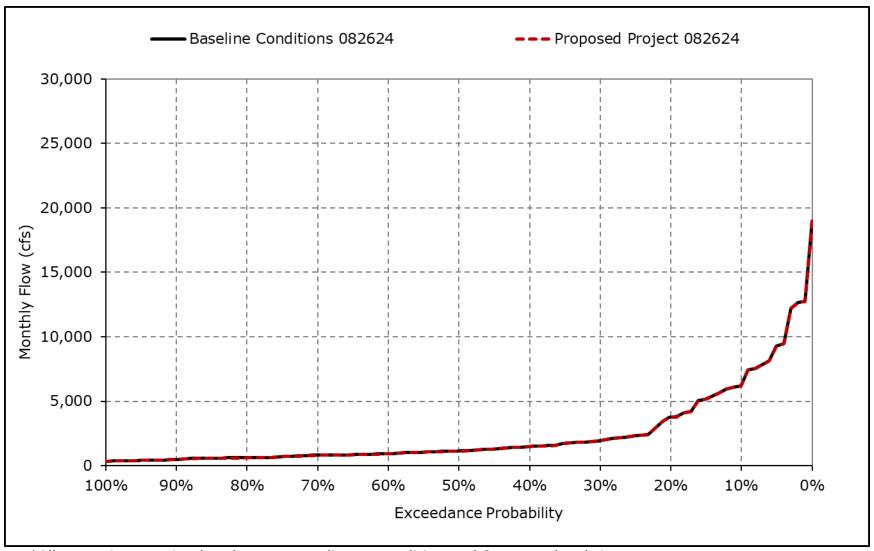

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5o. San Joaquin River at Vernalis, June

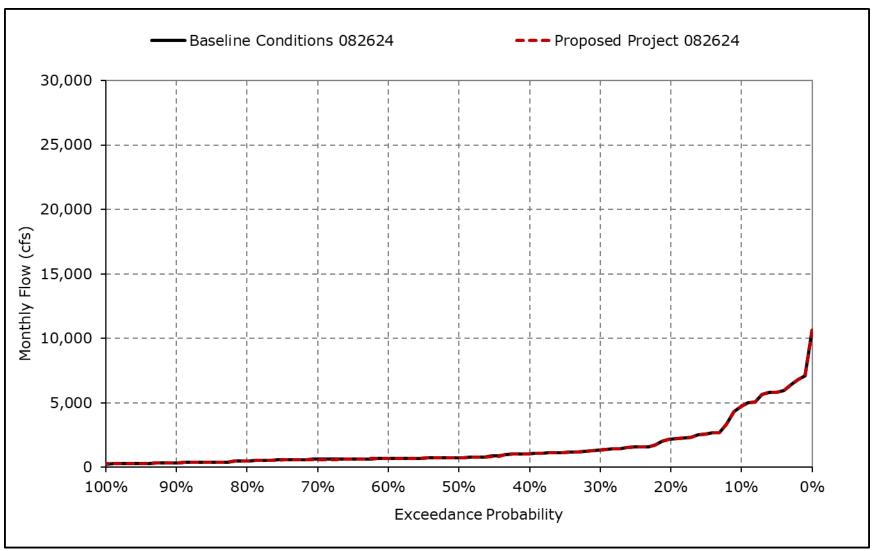

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5p. San Joaquin River at Vernalis, July

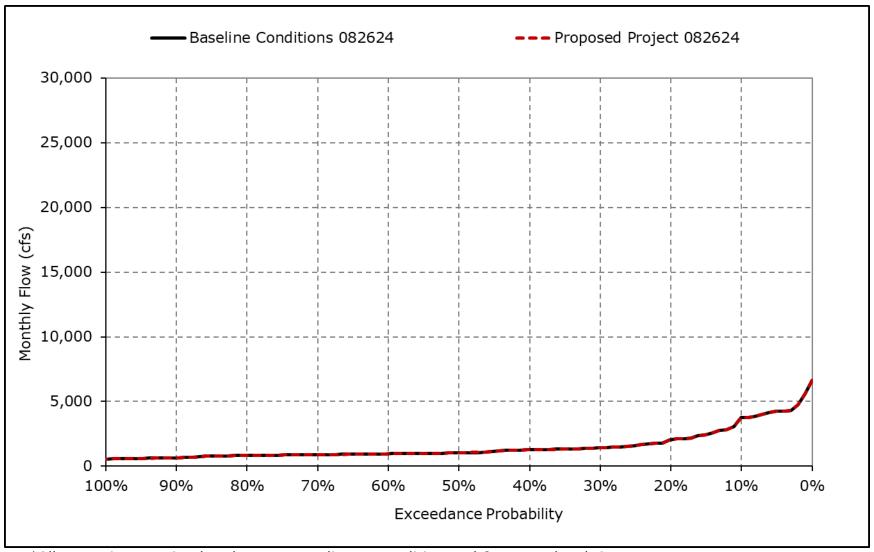

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5q. San Joaquin River at Vernalis, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-5r. San Joaquin River at Vernalis, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4B-2-6-1a. San Joaquin River at Vernalis (60-20-20), Baseline Conditions 082624, Monthly Flow (cfs)

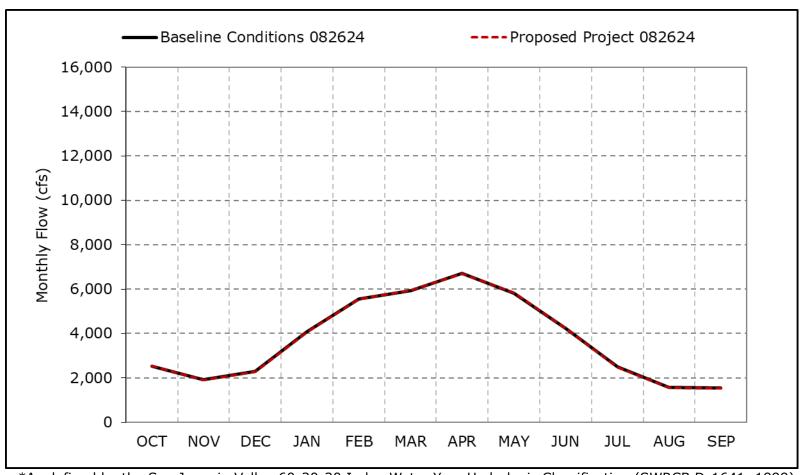
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,975	2,642	3,876	9,369	11,402	13,581	14,413	12,125	13,329	6,337	4,759	3,781
20% Exceedance	3,678	2,321	2,521	4,272	7,952	8,982	10,005	7,943	6,530	3,765	2,198	2,041
30% Exceedance	3,191	2,055	2,062	3,284	5,398	7,366	8,101	6,118	3,235	1,940	1,332	1,439
40% Exceedance	2,278	1,883	1,772	2,333	3,585	4,248	6,279	5,019	2,493	1,483	1,072	1,267
50% Exceedance	1,843	1,714	1,571	1,963	2,681	2,533	3,922	3,742	1,747	1,152	759	1,044
60% Exceedance	1,747	1,432	1,399	1,591	2,179	2,285	3,172	3,122	1,490	937	689	966
70% Exceedance	1,684	1,371	1,298	1,476	1,832	1,887	2,754	2,762	1,249	807	617	909
80% Exceedance	1,592	1,332	1,158	1,338	1,605	1,713	2,438	2,415	1,141	618	506	827
90% Exceedance	1,466	1,239	1,077	1,202	1,458	1,613	2,146	2,070	929	487	355	657
Full Simulation Period Average ^a	2,537	1,919	2,287	4,074	5,550	5,941	6,711	5,825	4,240	2,498	1,578	1,548
Wet Water Years (24%)	2,783	2,057	3,645	9,748	13,118	14,606	14,700	12,756	11,680	6,931	4,168	3,248
Above Normal Water Years (18%)	2,635	2,339	2,684	4,072	6,066	5,977	7,545	5,934	3,691	2,026	1,314	1,431
Below Normal Water Years (13%)	2,554	1,950	2,041	2,194	3,510	3,745	5,076	4,453	1,962	1,176	757	987
Dry Water Years (13%)	2,847	1,934	1,714	1,842	2,026	2,312	3,080	3,042	1,414	915	644	913
Critical Water Years (32%)	2,164	1,561	1,377	1,491	1,844	1,788	2,390	2,253	1,043	618	498	826

Table 4B-2-6-1b. San Joaquin River at Vernalis (60-20-20), Proposed Project 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	3,971	2,639	3,873	9,358	11,399	13,578	14,414	12,119	13,322	6,335	4,758	3,779
20% Exceedance	3,675	2,319	2,519	4,244	7,950	8,982	10,002	7,940	6,529	3,762	2,196	2,040
30% Exceedance	3,191	2,052	2,060	3,282	5,395	7,364	8,098	6,112	3,232	1,939	1,328	1,434
40% Exceedance	2,276	1,882	1,770	2,330	3,584	4,244	6,277	5,015	2,493	1,480	1,070	1,264
50% Exceedance	1,839	1,711	1,567	1,963	2,678	2,530	3,920	3,736	1,742	1,143	756	1,047
60% Exceedance	1,737	1,430	1,395	1,589	2,177	2,282	3,169	3,115	1,482	931	682	964
70% Exceedance	1,681	1,380	1,295	1,474	1,831	1,884	2,751	2,758	1,245	808	604	902
80% Exceedance	1,572	1,331	1,154	1,336	1,603	1,708	2,435	2,406	1,140	605	486	822
90% Exceedance	1,473	1,229	1,079	1,201	1,460	1,611	2,144	2,068	912	490	357	658
Full Simulation Period Average ^a	2,535	1,917	2,284	4,069	5,546	5,937	6,708	5,821	4,236	2,493	1,574	1,546
Wet Water Years (24%)	2,777	2,051	3,640	9,734	13,113	14,598	14,696	12,751	11,676	6,928	4,165	3,245
Above Normal Water Years (18%)	2,643	2,341	2,682	4,066	6,061	5,974	7,543	5,931	3,687	2,023	1,311	1,428
Below Normal Water Years (13%)	2,552	1,949	2,039	2,192	3,508	3,743	5,073	4,449	1,957	1,171	750	982
Dry Water Years (13%)	2,847	1,935	1,713	1,839	2,023	2,309	3,076	3,037	1,408	909	635	913
Critical Water Years (32%)	2,160	1,559	1,375	1,490	1,842	1,786	2,387	2,250	1,040	613	495	825

Table 4B-2-6-1c. San Joaquin River at Vernalis (60-20-20), Proposed Project 082624 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-4	-2	-3	-11	-2	-3	1	-6	-7	-2	-1	-2
20% Exceedance	-3	-2	-3	-28	-2	-1	-2	-3	-1	-3	-2	-1
30% Exceedance	0	-3	-2	-2	-3	-2	-3	-6	-2	-1	-3	-5
40% Exceedance	-2	-2	-1	-3	-1	-4	-3	-4	-1	-3	-3	-3
50% Exceedance	-4	-3	-3	0	-3	-3	-2	-6	-5	-9	-4	3
60% Exceedance	-10	-2	-4	-2	-2	-2	-4	-7	-8	-6	-7	-2
70% Exceedance	-3	9	-3	-2	-1	-4	-3	-4	-4	1	-13	-8
80% Exceedance	-20	-1	-4	-3	-2	-5	-3	-9	-1	-13	-20	-6
90% Exceedance	8	-9	2	-1	1	-2	-2	-3	-17	2	2	1
Full Simulation Period Average ^a	-1	-2	-2	-6	-4	-4	-3	-4	-4	-5	-4	-2
Wet Water Years (24%)	-5	-6	-5	-13	-5	-8	-4	-5	-5	-4	-3	-2
Above Normal Water Years (18%)	7	1	-2	-6	-5	-3	-3	-3	-4	-4	-3	-3
Below Normal Water Years (13%)	-2	-1	-1	-2	-2	-3	-3	-4	-4	-6	-7	-6
Dry Water Years (13%)	1	1	-1	-3	-3	-3	-4	-5	-5	-7	-8	1
Critical Water Years (32%)	-4	-2	-2	-2	-3	-2	-3	-3	-4	-5	-3	-2

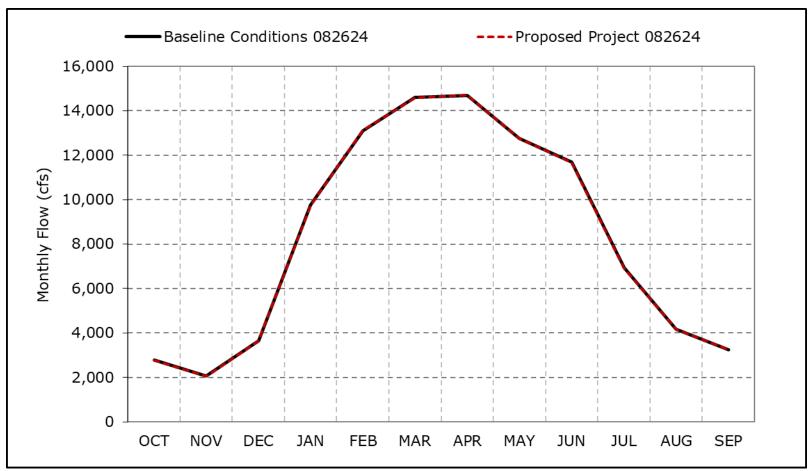

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 $[\]ensuremath{^{*}}$ Water Year Types results are displayed with water year - year type sorting.

Figure 4B-2-6a. San Joaquin River at Vernalis (60-20-20), Long-Term Average Flow

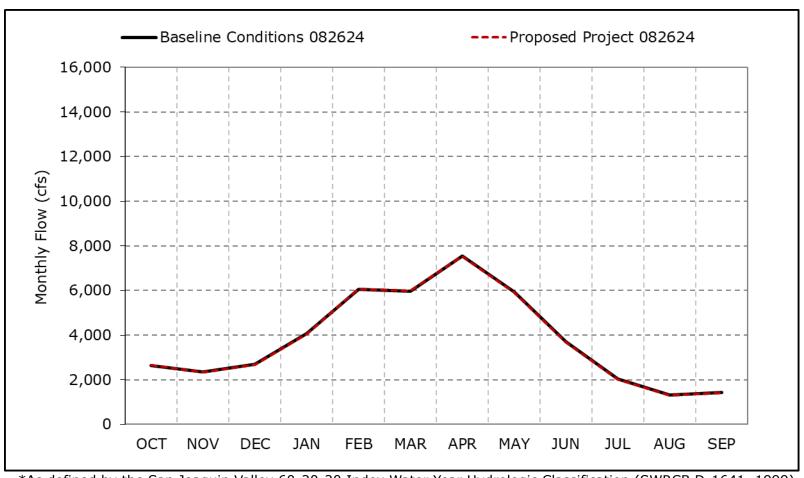


^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-6b. San Joaquin River at Vernalis (60-20-20), Wet Year Average Flow

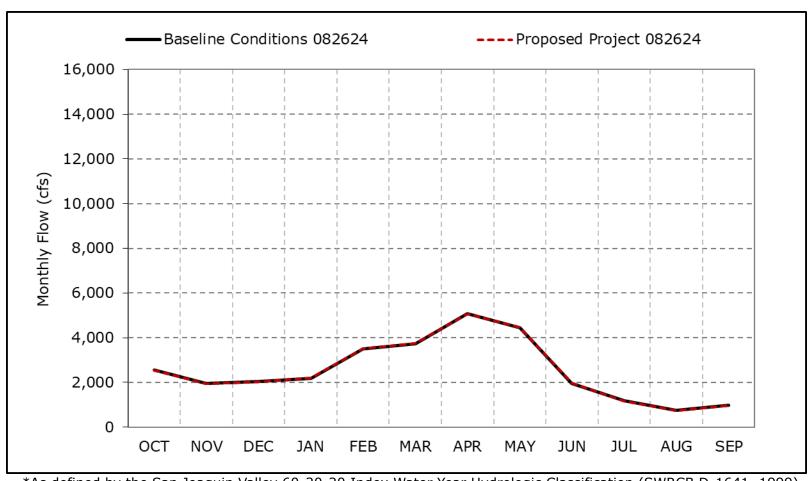


^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-6c. San Joaquin River at Vernalis (60-20-20), Above Normal Year Average Flow

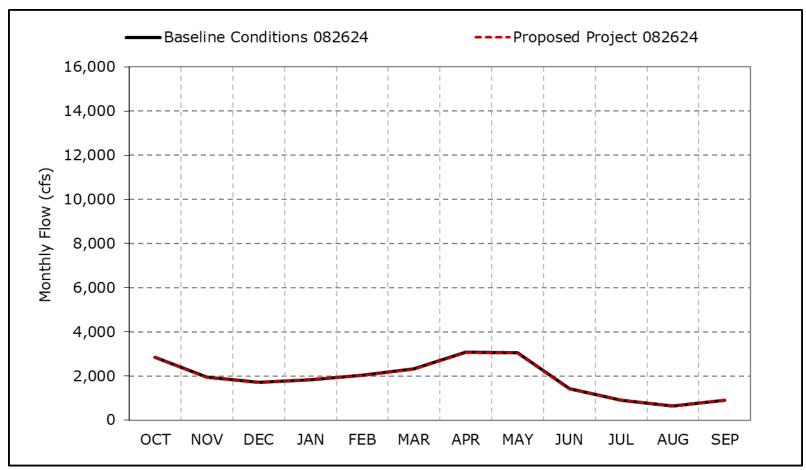


^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-6d. San Joaquin River at Vernalis (60-20-20), Below Normal Year Average Flow

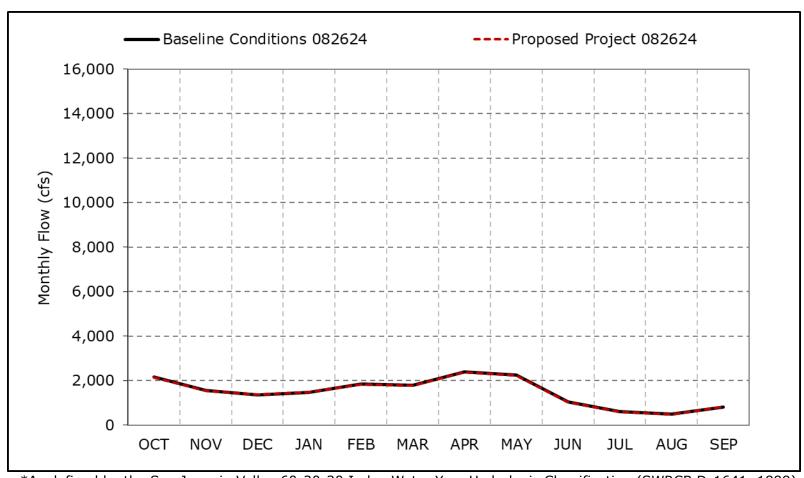


^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-6e. San Joaquin River at Vernalis (60-20-20), Dry Year Average Flow



^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-6f. San Joaquin River at Vernalis (60-20-20), Critical Year Average Flow

^{*}As defined by the San Joaquin Valley 60-20-20 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4B-2-7-1a. Mokelumne River below Cosumnes, Baseline Conditions 082624, Monthly Flow (cfs)

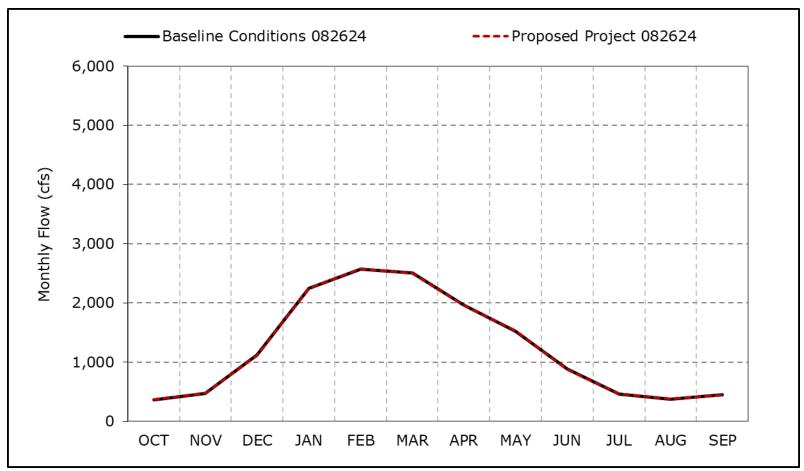
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	532	717	2,529	6,241	5,962	5,448	4,818	4,237	2,330	978	763	866
20% Exceedance	420	517	1,390	3,739	3,980	3,727	2,754	2,430	1,739	794	722	839
30% Exceedance	374	432	812	1,935	3,068	2,857	1,926	1,546	1,155	644	680	805
40% Exceedance	345	385	595	1,243	2,028	2,277	1,717	1,100	607	550	643	754
50% Exceedance	325	360	510	906	1,275	1,500	1,320	858	407	122	164	655
60% Exceedance	307	341	438	685	1,086	1,294	904	605	275	81	72	73
70% Exceedance	261	313	409	531	808	1,036	714	469	131	73	62	60
80% Exceedance	222	275	373	461	599	793	610	314	79	54	48	49
90% Exceedance	208	225	276	370	476	547	414	135	58	39	30	35
Full Simulation Period Average ^a	369	473	1,120	2,248	2,573	2,504	1,965	1,526	882	463	375	448
Wet Water Years (32%)	472	707	2,210	5,061	5,057	4,759	3,820	3,227	1,950	1,043	739	849
Above Normal Water Years (9%)	310	390	713	2,101	2,398	2,468	1,664	1,425	976	464	545	634
Below Normal Water Years (20%)	367	412	740	1,106	1,907	2,009	1,625	1,055	560	282	306	410
Dry Water Years (21%)	320	361	554	646	1,055	1,162	916	526	194	112	107	142
Critical Water Years (18%)	274	299	469	458	754	627	420	244	97	40	35	41

Table 4B-2-7-1b. Mokelumne River below Cosumnes, Proposed Project 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	532	717	2,529	6,241	5,960	5,448	4,818	4,237	2,330	978	763	866
20% Exceedance	420	517	1,390	3,739	3,980	3,727	2,754	2,430	1,739	794	722	839
30% Exceedance	374	432	812	1,935	3,068	2,857	1,926	1,545	1,155	644	680	805
40% Exceedance	345	385	595	1,243	2,028	2,277	1,717	1,100	607	550	643	754
50% Exceedance	325	360	510	906	1,275	1,500	1,320	858	407	122	164	655
60% Exceedance	307	341	438	685	1,086	1,294	904	605	275	81	72	73
70% Exceedance	261	313	409	531	808	1,036	714	469	131	73	62	60
80% Exceedance	222	275	373	461	599	793	610	314	79	54	48	49
90% Exceedance	208	225	276	370	476	549	414	135	59	39	31	34
Full Simulation Period Average ^a	369	473	1,120	2,248	2,573	2,504	1,965	1,526	882	463	375	448
Wet Water Years (32%)	472	707	2,210	5,061	5,057	4,759	3,820	3,227	1,950	1,043	740	849
Above Normal Water Years (9%)	310	390	713	2,101	2,398	2,468	1,664	1,425	976	464	545	634
Below Normal Water Years (20%)	367	412	740	1,106	1,907	2,009	1,625	1,055	559	281	305	410
Dry Water Years (21%)	320	361	554	646	1,055	1,162	916	526	194	112	106	142
Critical Water Years (18%)	274	299	469	458	754	627	420	244	97	40	35	40

Table 4B-2-7-1c. Mokelumne River below Cosumnes, Proposed Project 082624 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	0	0	0	0	-3	0	0	0	0	0	0	0
20% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
30% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
40% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
50% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
60% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
70% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
80% Exceedance	0	0	0	0	0	0	0	0	0	0	0	0
90% Exceedance	0	0	0	0	0	1	0	0	0	0	1	-1
Full Simulation Period Average ^a	0	0	0	0	0	0	0	0	0	0	0	0
Wet Water Years (32%)	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal Water Years (9%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal Water Years (20%)	0	0	0	0	0	0	0	0	0	-1	-1	0
Dry Water Years (21%)	0	0	0	0	0	0	0	0	0	0	-1	0
Critical Water Years (18%)	0	0	0	0	0	0	0	0	0	0	1	0

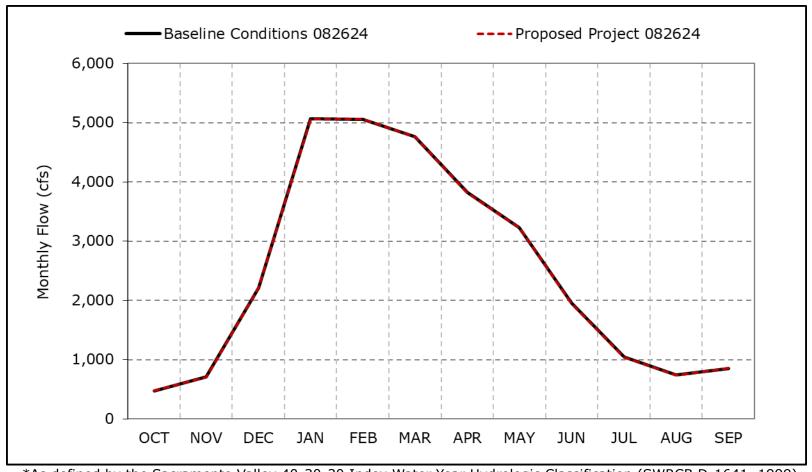

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 $[\]ensuremath{^{*}}$ Water Year Types results are displayed with water year - year type sorting.

Figure 4B-2-7a. Mokelumne River below Cosumnes, Long-Term Average Flow

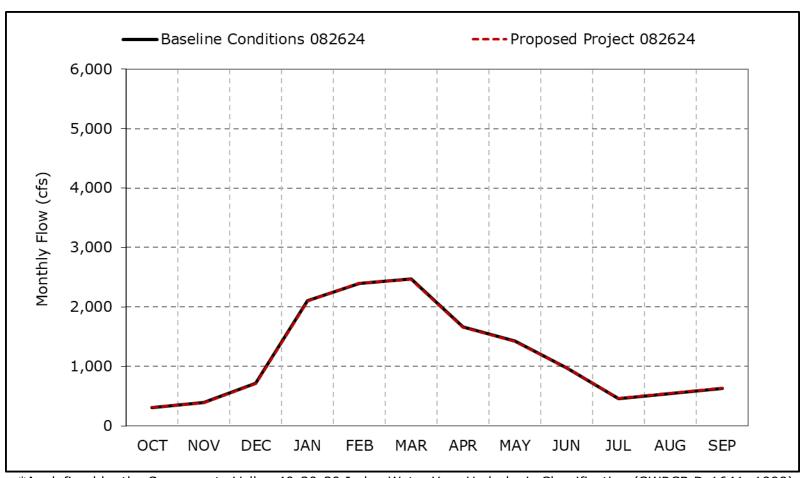


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7b. Mokelumne River below Cosumnes, Wet Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

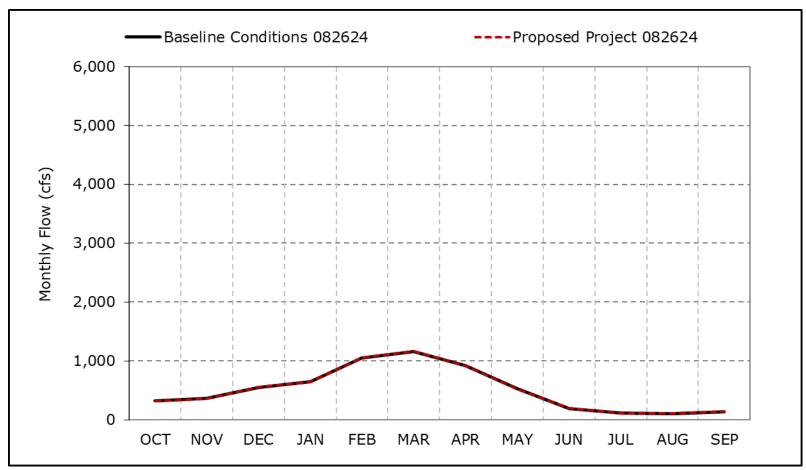
Figure 4B-2-7c. Mokelumne River below Cosumnes, Above Normal Year Average Flow

^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7d. Mokelumne River below Cosumnes, Below Normal Year Average Flow

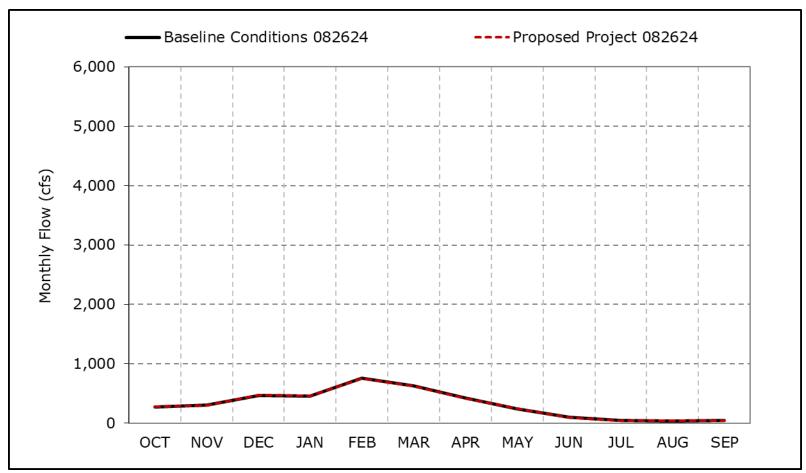


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7e. Mokelumne River below Cosumnes, Dry Year Average Flow

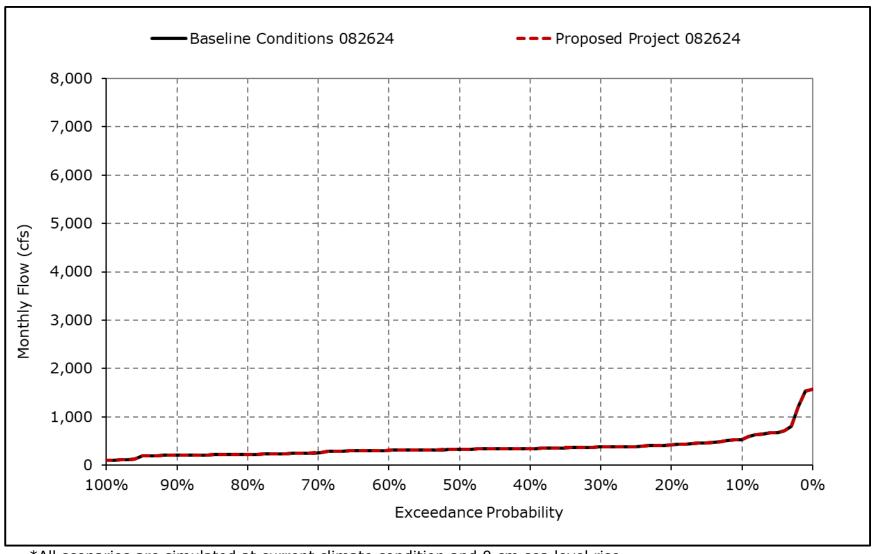


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7f. Mokelumne River below Cosumnes, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

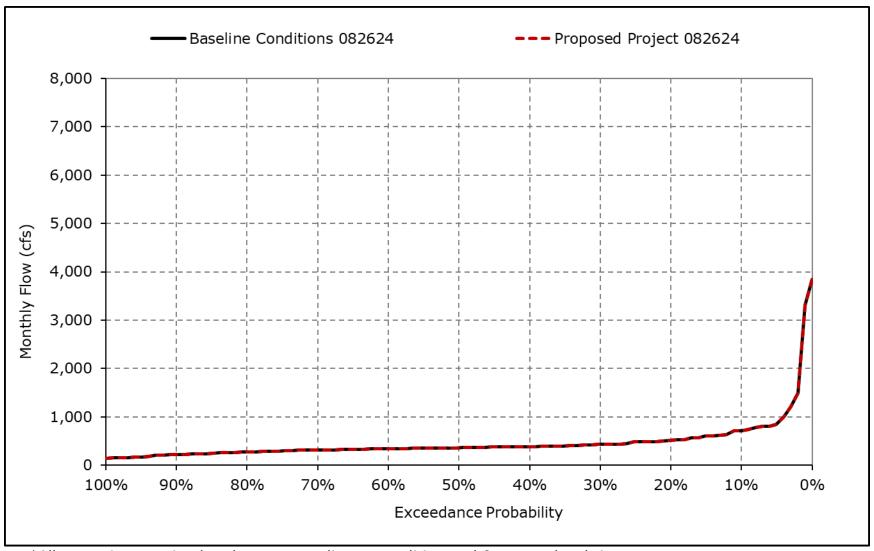

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7g. Mokelumne River below Cosumnes, October

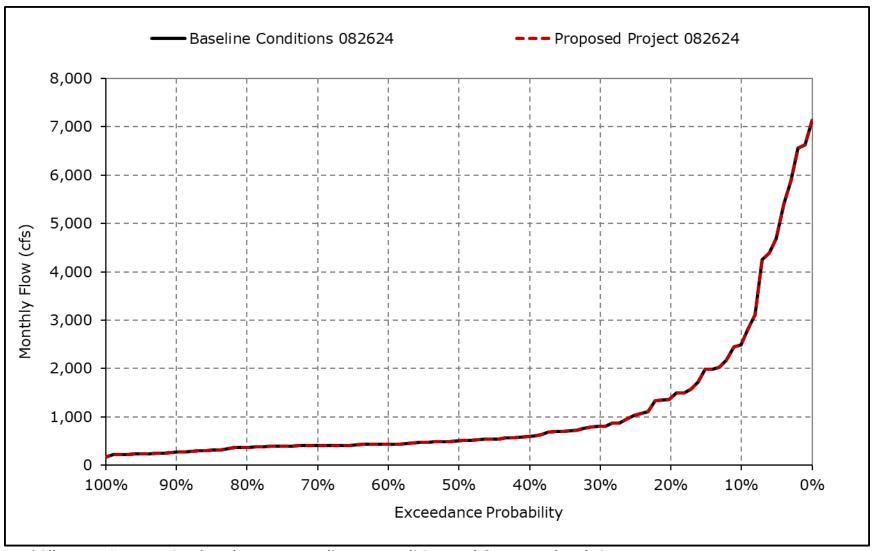

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7h. Mokelumne River below Cosumnes, November

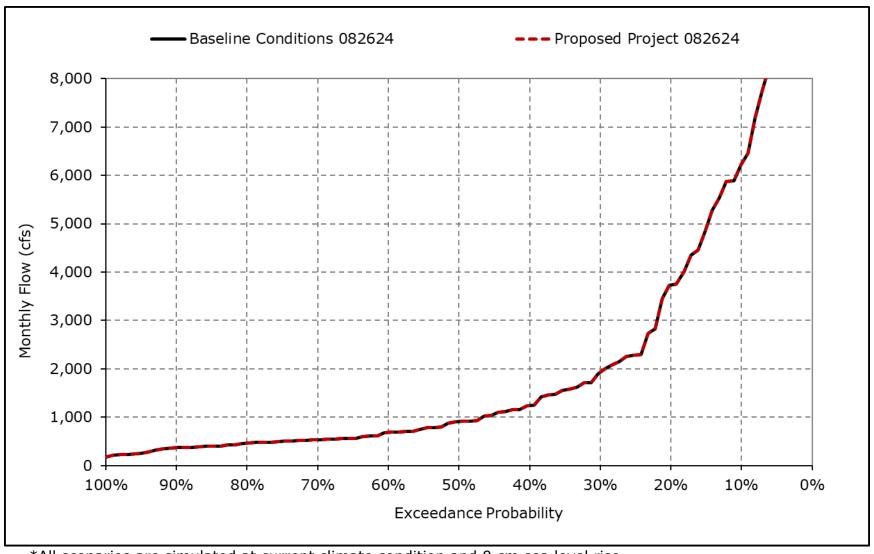

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7i. Mokelumne River below Cosumnes, December

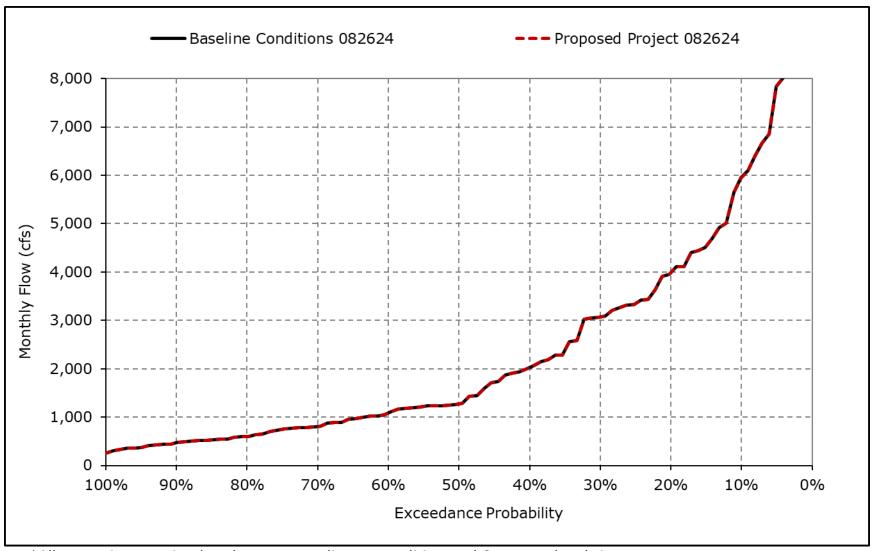

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7j. Mokelumne River below Cosumnes, January

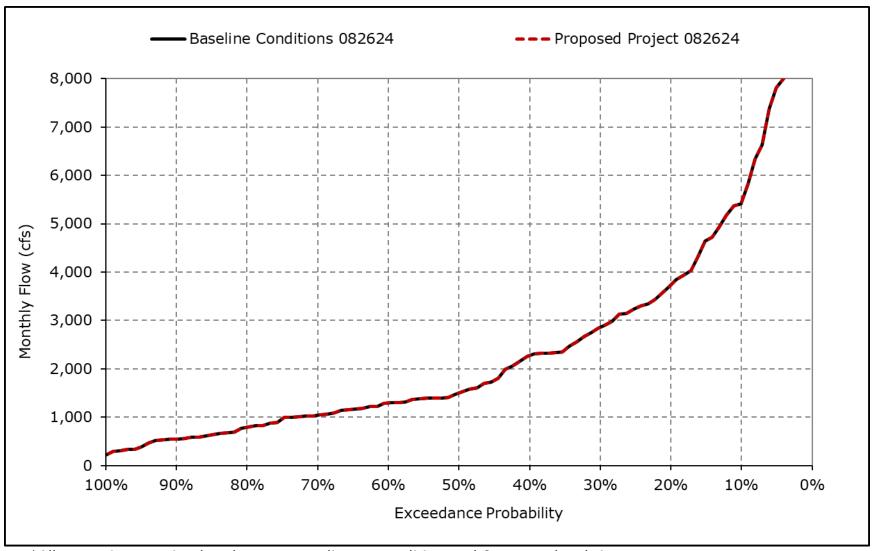

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7k. Mokelumne River below Cosumnes, February

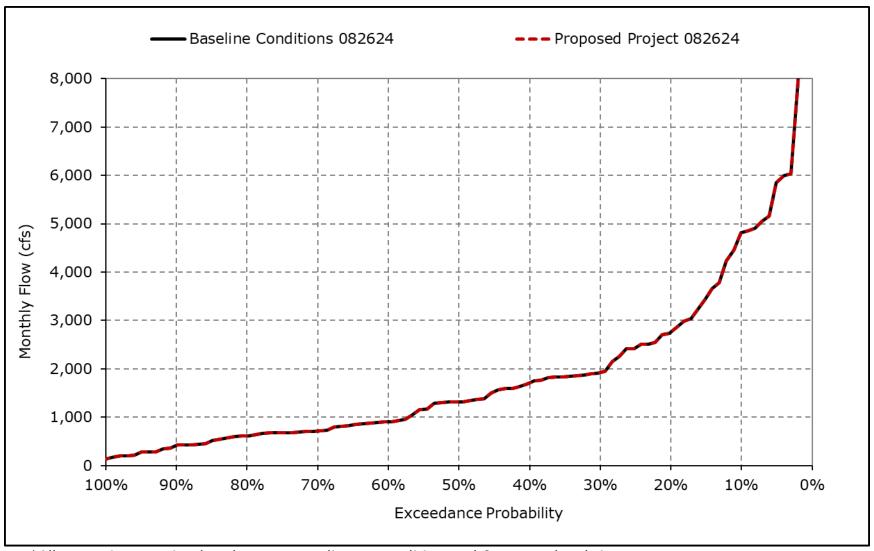

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7I. Mokelumne River below Cosumnes, March

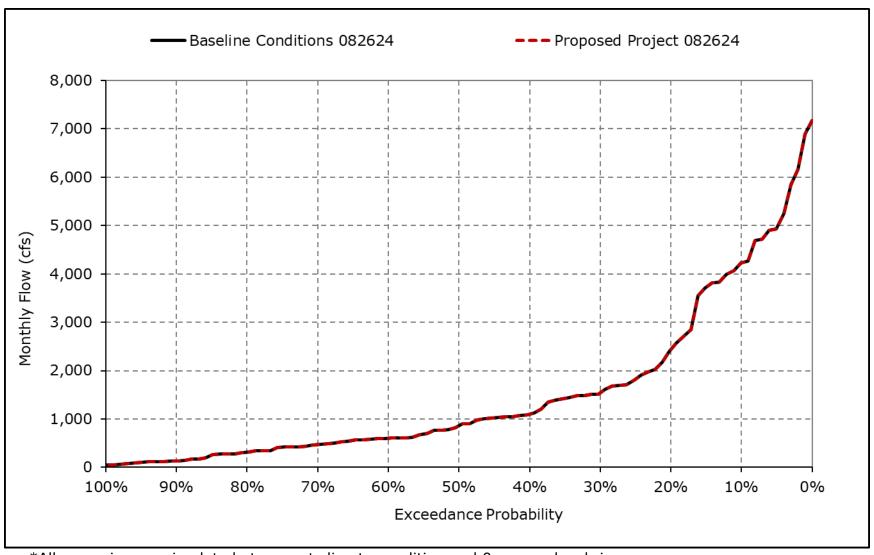

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7m. Mokelumne River below Cosumnes, April

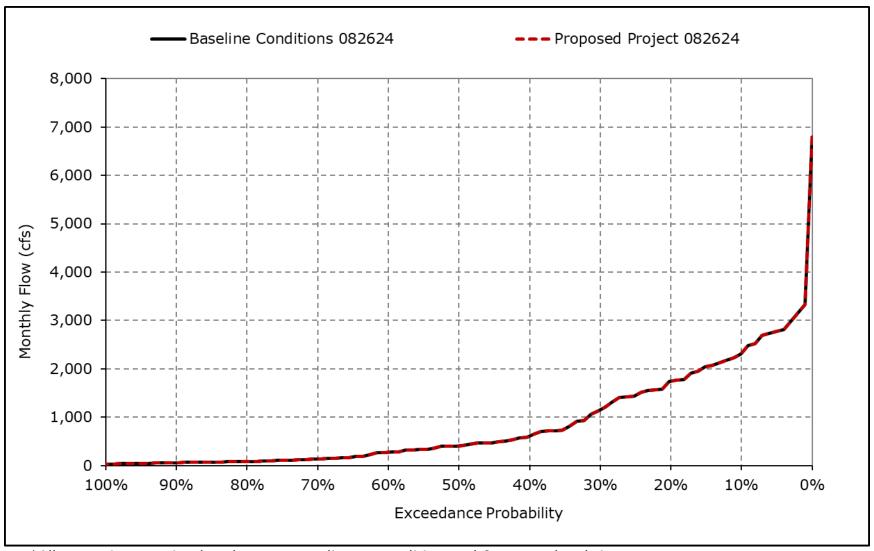

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7n. Mokelumne River below Cosumnes, May

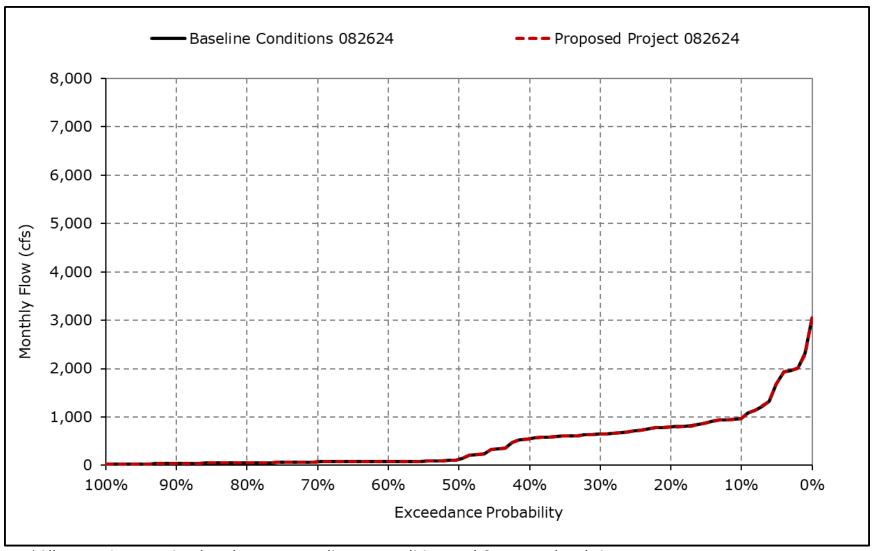

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7o. Mokelumne River below Cosumnes, June

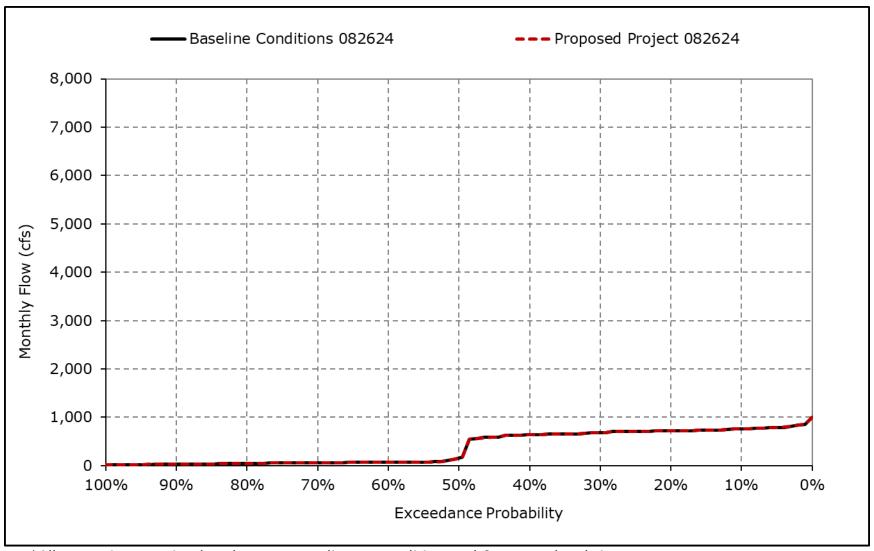

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7p. Mokelumne River below Cosumnes, July

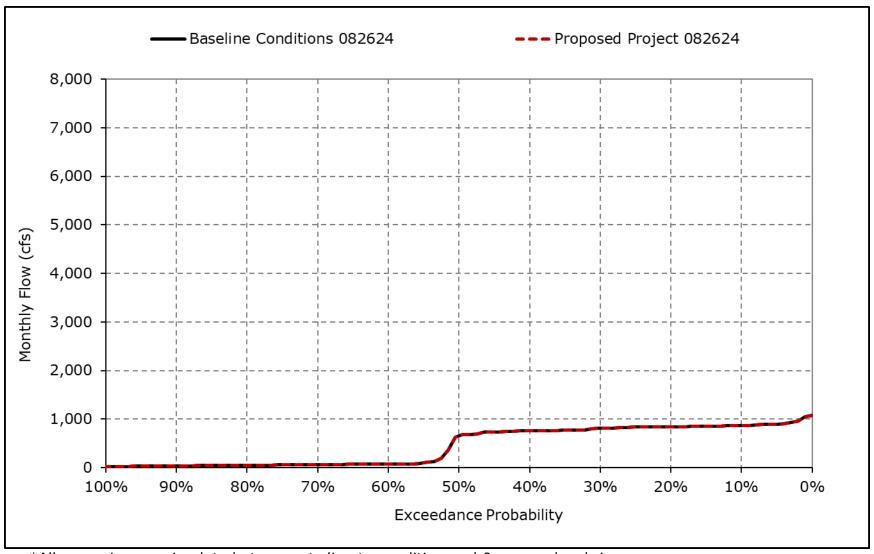

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7q. Mokelumne River below Cosumnes, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-7r. Mokelumne River below Cosumnes, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4B-2-8-1a. Old and Middle River Flow, Baseline Conditions 082624, Monthly Flow (combined flows)(cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-2,274	-1,649	-2,406	-2,131	-1,898	-1,346	1,295	378	-1,804	-2,912	-2,356	-3,403
20% Exceedance	-3,666	-3,268	-3,217	-3,645	-4,292	-2,829	244	-449	-3,630	-5,028	-3,284	-4,197
30% Exceedance	-4,046	-3,960	-4,910	-3,645	-4,329	-3,370	-268	-976	-4,388	-7,261	-4,497	-5,031
40% Exceedance	-4,731	-5,828	-5,290	-3,645	-4,329	-3,409	-526	-1,386	-4,544	-8,783	-7,286	-5,664
50% Exceedance	-5,332	-6,717	-5,290	-4,516	-4,464	-3,413	-754	-1,595	-4,839	-9,595	-9,097	-6,322
60% Exceedance	-5,847	-8,370	-5,290	-4,516	-4,464	-3,425	-1,059	-1,728	-5,000	-10,065	-9,607	-7,669
70% Exceedance	-6,348	-8,874	-5,290	-4,516	-4,464	-3,442	-1,262	-1,998	-5,000	-10,775	-10,252	-8,624
80% Exceedance	-7,357	-9,131	-6,062	-4,608	-4,483	-4,191	-1,413	-2,405	-5,000	-11,108	-10,585	-9,394
90% Exceedance	-8,501	-9,492	-8,156	-5,000	-4,963	-4,196	-1,873	-3,587	-5,000	-11,401	-11,155	-9,911
Full Simulation Period Average ^a	-5,339	-6,250	-5,185	-3,569	-3,743	-2,825	-493	-1,445	-4,138	-8,442	-7,480	-6,690
Wet Water Years (32%)	-6,285	-7,266	-5,452	-2,870	-2,540	-1,398	-677	-2,092	-3,976	-9,344	-9,910	-8,390
Above Normal Water Years (9%)	-4,689	-6,826	-6,718	-4,183	-4,331	-3,391	-735	-2,338	-4,820	-9,926	-10,090	-6,690
Below Normal Water Years (20%)	-5,629	-6,728	-5,134	-4,167	-4,301	-3,666	516	-585	-4,842	-10,771	-9,792	-8,294
Dry Water Years (21%)	-5,146	-6,261	-5,156	-4,097	-4,421	-3,902	-767	-1,020	-4,859	-8,634	-4,813	-5,392
Critical Water Years (18%)	-3,887	-3,609	-4,032	-3,222	-4,177	-2,887	-845	-1,299	-2,459	-3,286	-2,396	-3,400

Table 4B-2-8-1b. Old and Middle River Flow, Proposed Project 082624, Monthly Flow (combined flows)(cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-2,516	-1,692	-2,423	-2,586	-2,368	-1,329	1,091	-870	-1,884	-2,930	-2,318	-3,425
20% Exceedance	-3,589	-3,262	-3,385	-3,328	-3,589	-2,636	167	-1,055	-3,611	-5,169	-3,332	-4,185
30% Exceedance	-3,998	-3,979	-5,136	-3,570	-3,742	-2,672	-363	-1,319	-4,115	-7,418	-4,851	-4,987
40% Exceedance	-4,652	-5,679	-5,290	-3,645	-3,894	-2,745	-564	-1,503	-4,115	-8,784	-7,495	-5,787
50% Exceedance	-5,363	-6,792	-5,290	-4,053	-3,963	-3,075	-932	-1,789	-4,183	-9,518	-9,477	-6,484
60% Exceedance	-5,804	-8,370	-5,290	-4,235	-4,058	-3,478	-1,078	-2,066	-4,310	-10,405	-10,152	-7,830
70% Exceedance	-6,281	-8,875	-5,290	-4,395	-4,265	-3,795	-1,351	-3,262	-4,310	-10,997	-10,691	-9,264
80% Exceedance	-6,838	-9,132	-6,126	-4,489	-4,357	-3,820	-1,895	-3,755	-4,400	-11,231	-11,012	-9,949
90% Exceedance	-8,447	-9,493	-8,114	-4,700	-4,379	-4,236	-2,346	-3,971	-4,400	-11,428	-11,483	-10,823
Full Simulation Period Average ^a	-5,288	-6,228	-5,184	-3,468	-3,405	-2,630	-734	-2,096	-3,707	-8,533	-7,773	-6,953
Wet Water Years (32%)	-6,194	-7,206	-5,487	-2,752	-2,463	-1,674	-1,086	-2,918	-3,430	-9,420	-10,286	-9,357
Above Normal Water Years (9%)	-4,461	-6,814	-6,854	-4,010	-3,946	-3,031	-1,229	-3,350	-4,119	-10,313	-10,582	-7,331
Below Normal Water Years (20%)	-5,446	-6,749	-5,142	-3,992	-3,852	-3,026	135	-1,587	-4,306	-10,726	-10,186	-7,888
Dry Water Years (21%)	-5,309	-6,286	-5,018	-4,091	-3,862	-3,417	-640	-1,328	-4,384	-8,853	-5,035	-5,301
Critical Water Years (18%)	-3,890	-3,550	-4,053	-3,159	-3,777	-2,772	-939	-1,471	-2,536	-3,258	-2,414	-3,376

Table 4B-2-8-1c. Old and Middle River Flow, Proposed Project 082624 minus Baseline Conditions 082624, Monthly Flow (combined flows)(cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	-243	-43	-17	-455	-470	17	-204	-1,248	-79	-18	38	-22
20% Exceedance	76	6	-168	318	702	193	-77	-606	19	-141	-49	12
30% Exceedance	48	-19	-226	75	587	698	-95	-343	273	-158	-355	44
40% Exceedance	79	149	0	0	434	664	-38	-117	429	-1	-208	-123
50% Exceedance	-31	-75	0	463	501	338	-178	-194	656	77	-380	-162
60% Exceedance	43	0	0	281	406	-53	-19	-338	690	-340	-545	-161
70% Exceedance	67	-1	0	121	199	-354	-89	-1,264	690	-222	-439	-640
80% Exceedance	520	-1	-65	119	126	371	-482	-1,349	600	-123	-426	-556
90% Exceedance	54	-1	42	300	584	-40	-473	-384	600	-26	-328	-912
Full Simulation Period Average ^a	52	22	0	101	338	194	-242	-651	431	-91	-293	-263
Wet Water Years (32%)	91	60	-35	118	77	-276	-409	-826	546	-76	-376	-968
Above Normal Water Years (9%)	229	13	-136	173	385	360	-494	-1,012	701	-387	-491	-642
Below Normal Water Years (20%)	183	-20	-8	175	449	639	-381	-1,002	536	45	-394	406
Dry Water Years (21%)	-163	-25	139	5	558	485	127	-309	475	-219	-222	91
Critical Water Years (18%)	-3	59	-21	63	400	115	-94	-172	-77	28	-17	24

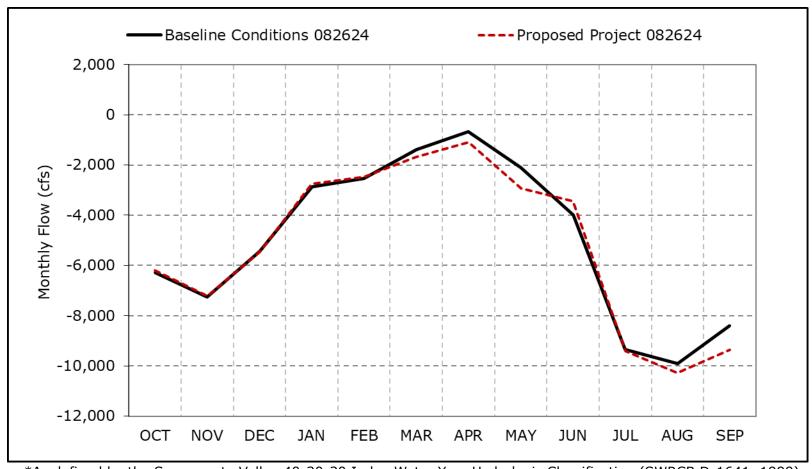
^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 $[\]ensuremath{^{*}}$ Water Year Types results are displayed with water year - year type sorting.

Figure 4B-2-8a. Old and Middle River Flow, Long-Term Average Flow

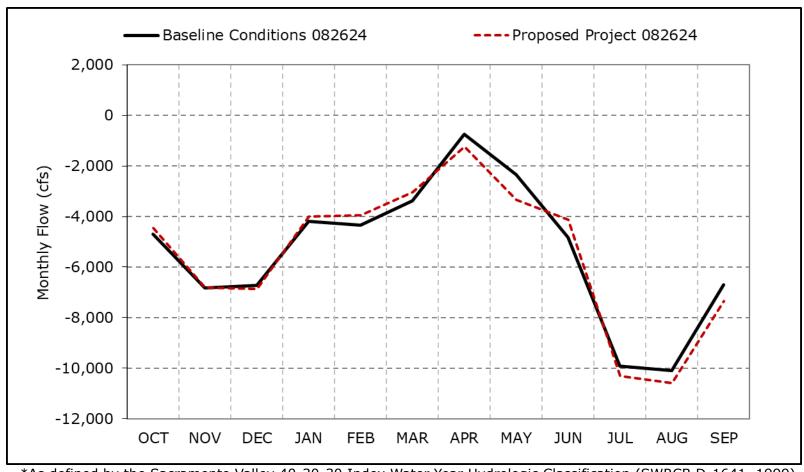


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8b. Old and Middle River Flow, Wet Year Average Flow

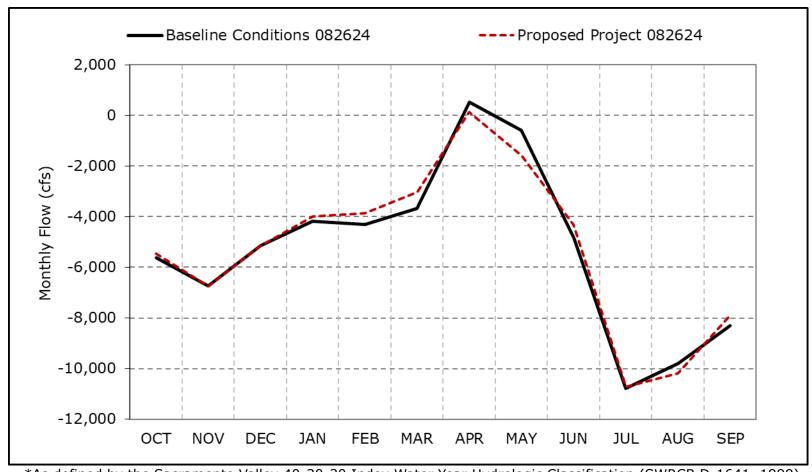


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8c. Old and Middle River Flow, Above Normal Year Average Flow

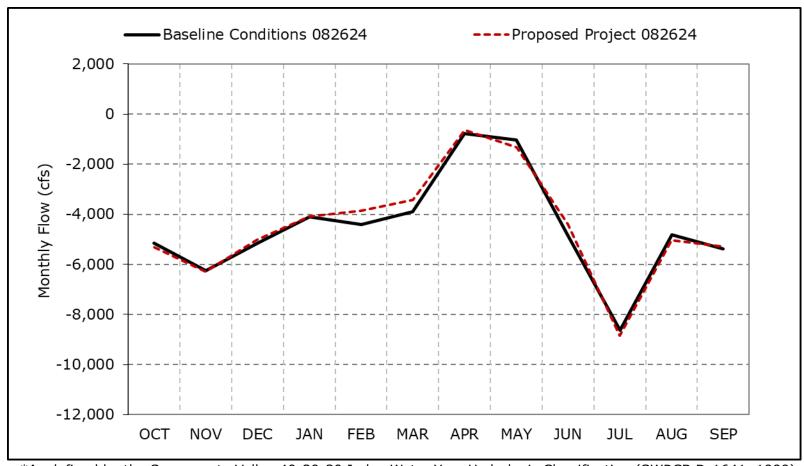


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8d. Old and Middle River Flow, Below Normal Year Average Flow

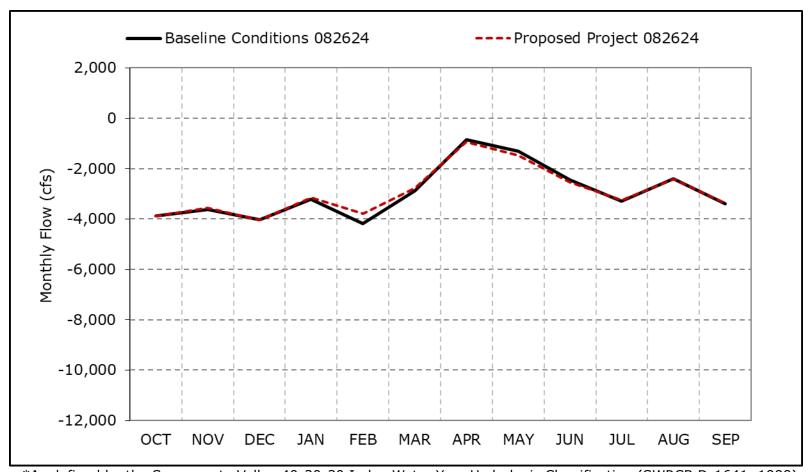


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8e. Old and Middle River Flow, Dry Year Average Flow

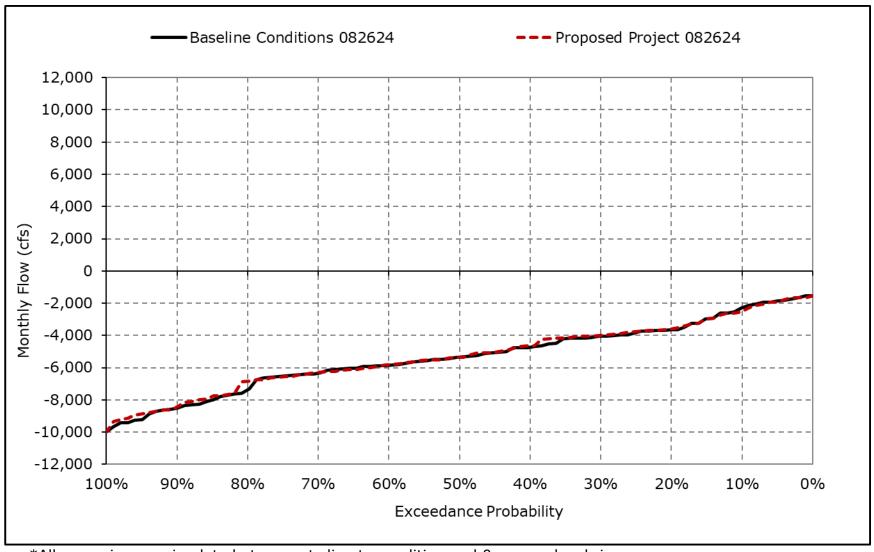


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8f. Old and Middle River Flow, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

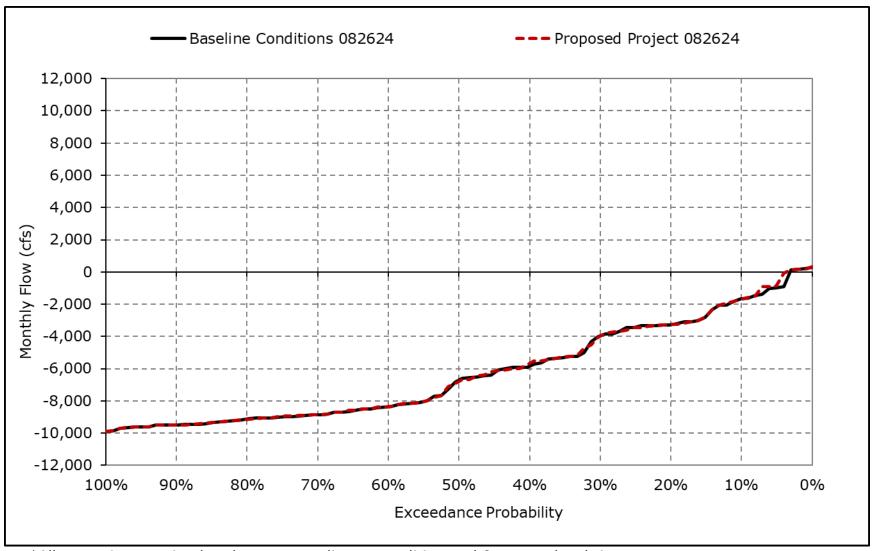

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8g. Old and Middle River Flow, October

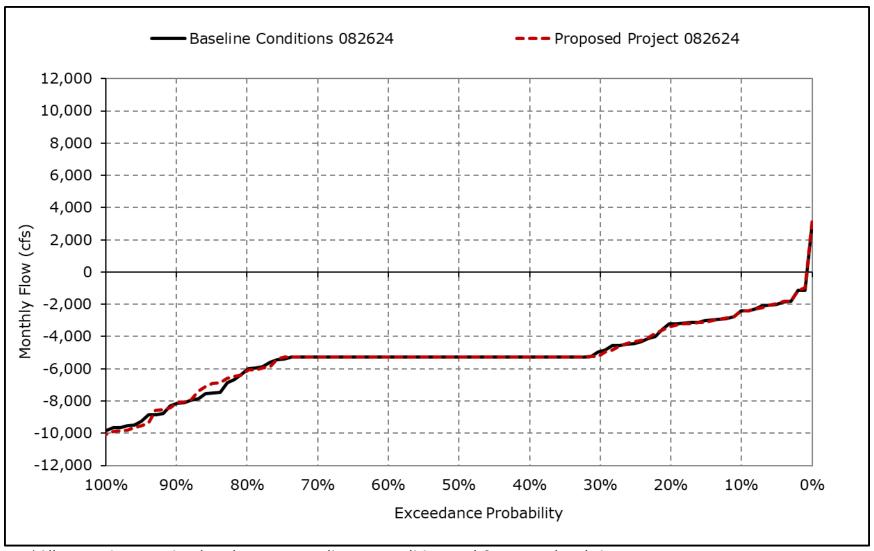

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8h. Old and Middle River Flow, November

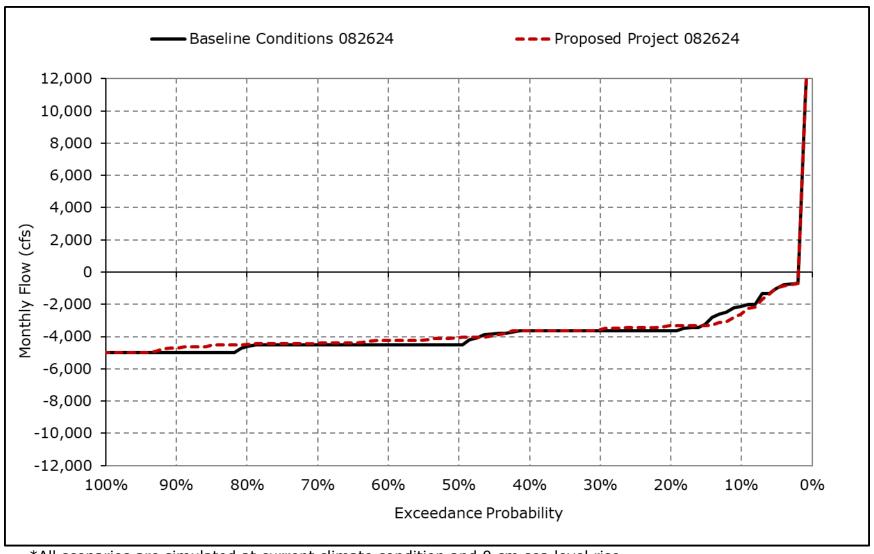

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8i. Old and Middle River Flow, December

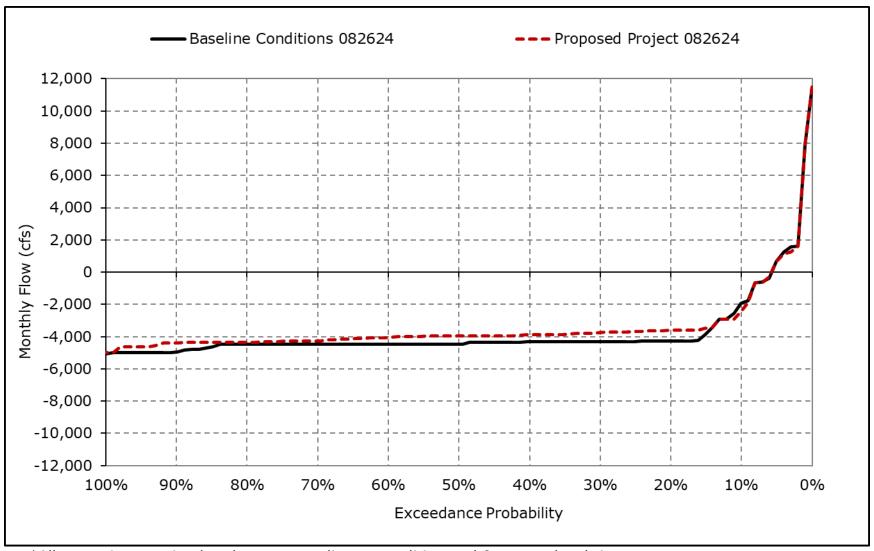

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8j. Old and Middle River Flow, January

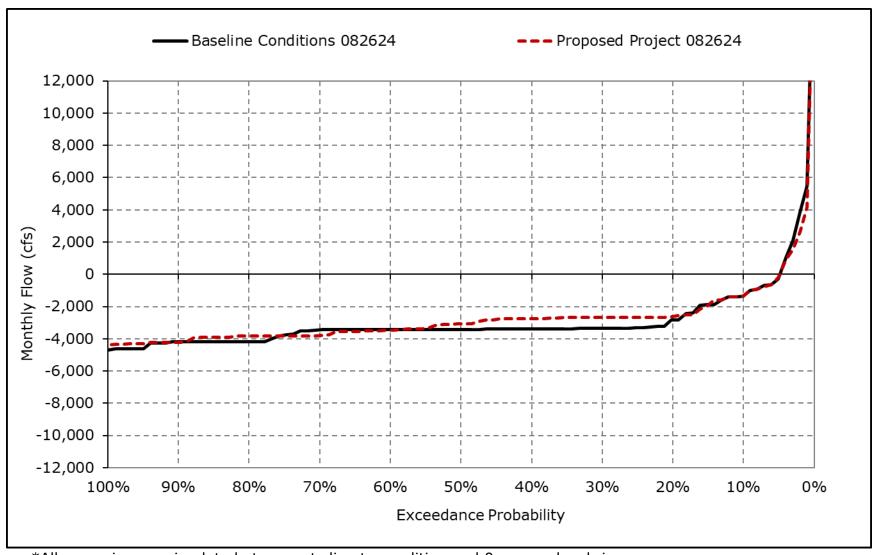

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8k. Old and Middle River Flow, February

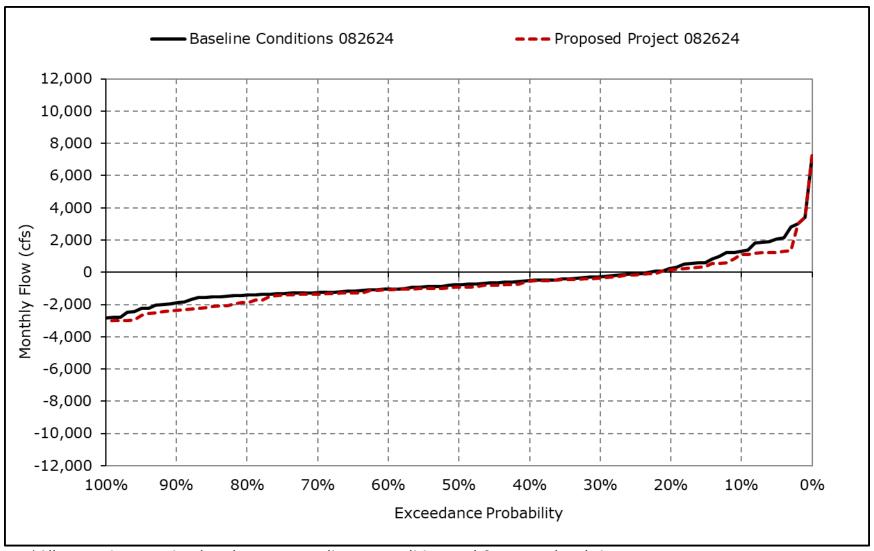

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8I. Old and Middle River Flow, March

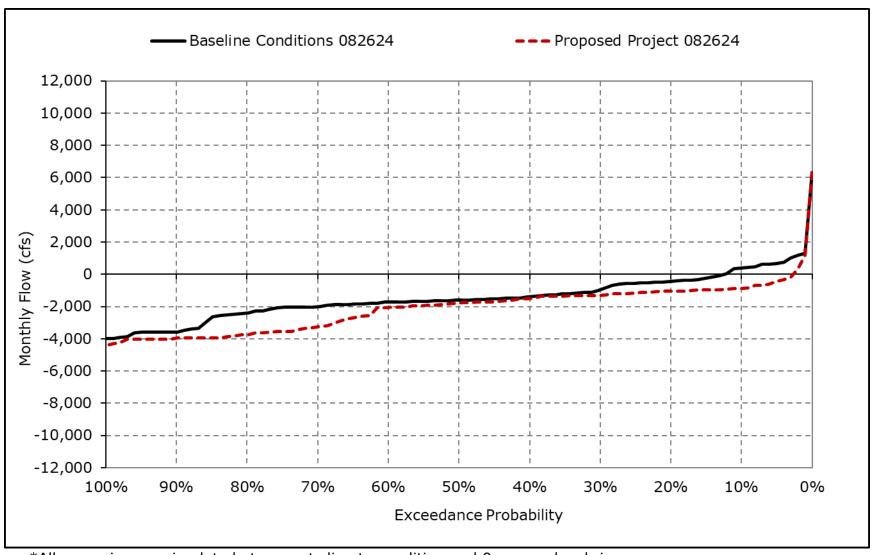

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8m. Old and Middle River Flow, April

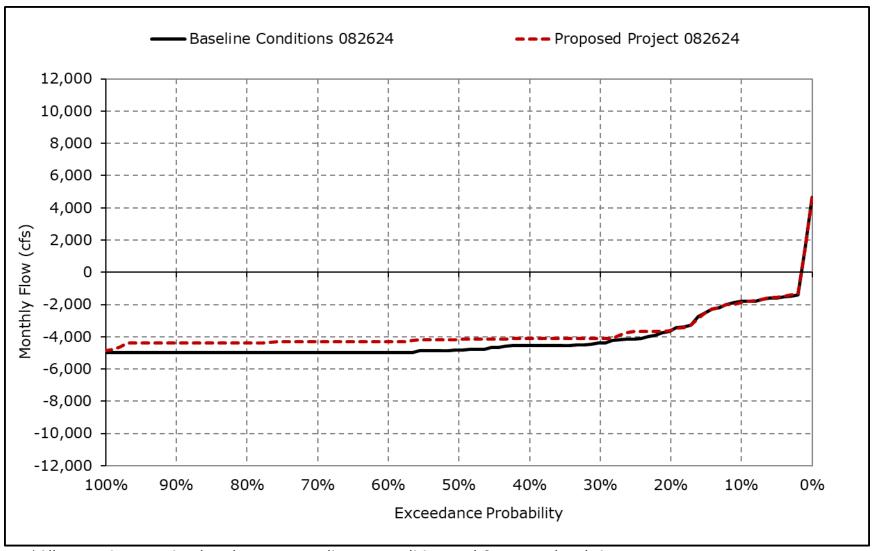

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8n. Old and Middle River Flow, May

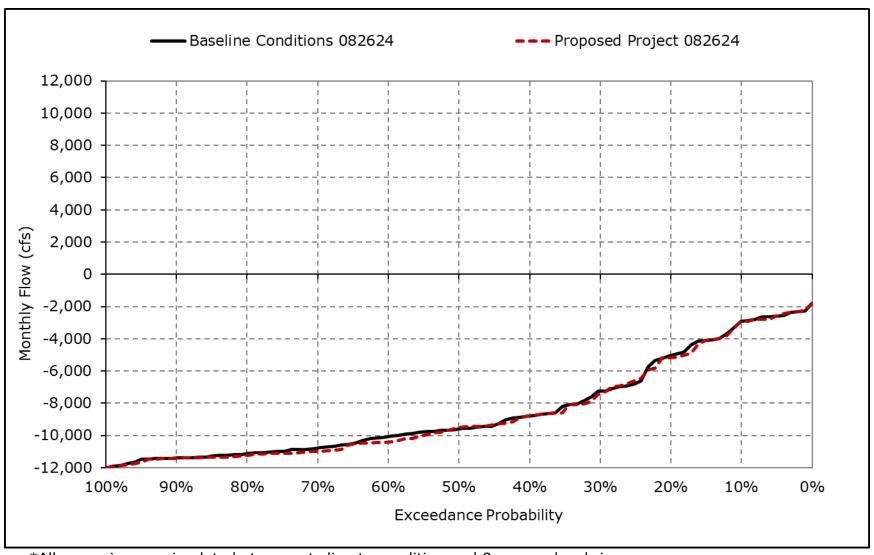

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8o. Old and Middle River Flow, June

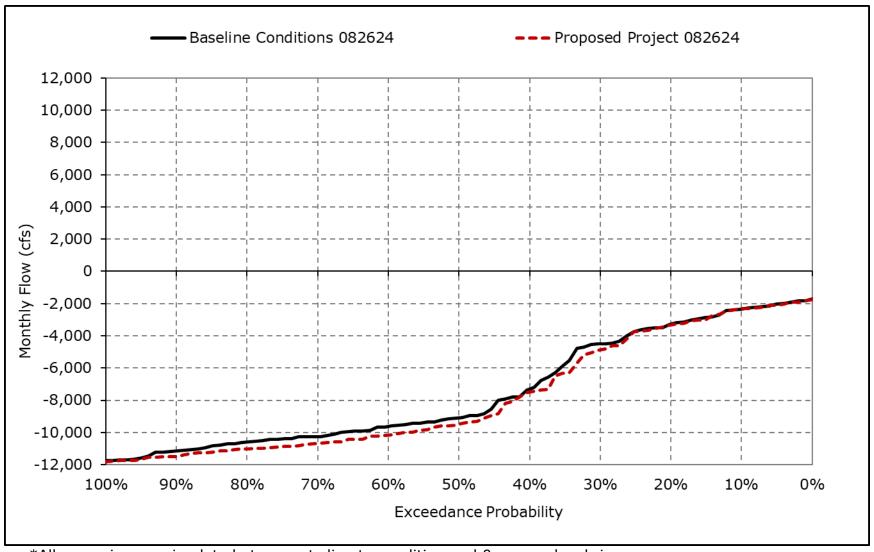

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8p. Old and Middle River Flow, July

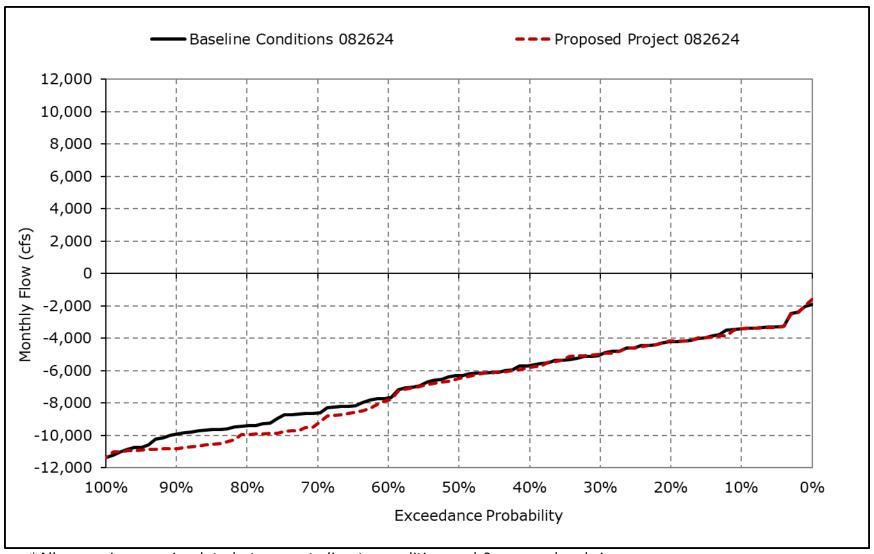

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8q. Old and Middle River Flow, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-8r. Old and Middle River Flow, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4B-2-9-1a. Qwest, Baseline Conditions 082624, Monthly Flow (cfs)

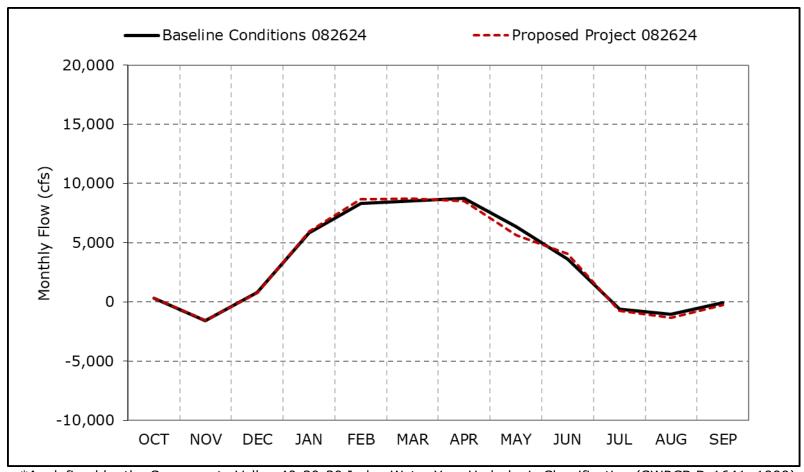
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	1,552	765	7,513	18,028	21,137	20,930	16,991	14,774	10,980	1,853	1,551	2,062
20% Exceedance	1,118	74	2,702	11,876	13,311	14,256	13,134	8,692	5,420	1,448	1,183	918
30% Exceedance	889	-163	1,105	4,851	10,270	9,733	10,669	6,713	3,454	478	813	588
40% Exceedance	716	-1,299	496	3,390	6,132	7,195	8,280	5,507	2,228	-219	73	128
50% Exceedance	491	-1,717	-207	1,813	4,003	4,293	6,333	4,501	1,872	-1,102	-957	-140
60% Exceedance	186	-2,628	-903	1,037	2,203	2,671	5,148	3,657	1,225	-1,776	-2,246	-361
70% Exceedance	-154	-3,253	-2,045	-147	1,321	2,119	3,655	2,372	749	-2,590	-2,563	-653
80% Exceedance	-578	-3,674	-3,167	-1,134	130	1,466	2,717	2,050	567	-3,049	-3,066	-1,165
90% Exceedance	-1,549	-4,058	-5,164	-1,938	-646	402	2,237	1,689	341	-3,478	-3,823	-2,013
Full Simulation Period Average ^a	287	-1,578	777	5,855	8,319	8,512	8,771	6,362	3,631	-612	-1,050	-53
Wet Water Years (32%)	-64	-1,562	4,414	15,695	18,943	18,821	16,008	11,654	7,977	1,105	-1,412	814
Above Normal Water Years (9%)	738	-2,403	-1,569	6,198	8,536	8,887	8,330	5,510	3,065	-1,353	-2,547	1,395
Below Normal Water Years (20%)	216	-1,947	-802	1,793	5,318	5,512	8,028	5,776	1,584	-2,739	-3,151	-2,093
Dry Water Years (21%)	437	-1,925	-1,113	-316	1,685	1,801	3,873	3,084	682	-2,382	78	-508
Critical Water Years (18%)	590	-378	-558	-97	396	1,159	2,667	1,854	1,903	1,133	1,362	480

Table 4B-2-9-1b. Qwest, Proposed Project 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	1,766	792	7,471	18,057	20,865	20,751	16,965	13,242	11,345	1,847	1,552	1,348
20% Exceedance	1,099	74	2,686	11,969	13,425	14,972	12,638	6,691	6,053	1,430	1,074	713
30% Exceedance	954	-319	1,065	4,948	10,432	9,824	9,279	5,429	4,023	407	390	249
40% Exceedance	761	-1,292	418	3,632	6,503	7,365	7,373	4,580	2,813	-324	-530	-55
50% Exceedance	533	-1,779	-205	2,116	4,460	4,641	5,907	3,608	2,075	-1,211	-1,653	-281
60% Exceedance	287	-2,609	-1,197	846	2,939	3,403	4,951	2,872	1,727	-2,173	-2,650	-584
70% Exceedance	-56	-3,249	-2,042	-191	1,713	2,496	3,874	2,209	1,210	-2,906	-3,068	-938
80% Exceedance	-573	-3,676	-3,039	-1,001	771	1,713	2,825	1,791	978	-3,200	-3,404	-1,231
90% Exceedance	-1,585	-4,115	-4,862	-1,897	-330	926	2,337	1,468	825	-3,521	-4,104	-1,978
Full Simulation Period Average ^a	356	-1,560	767	5,961	8,679	8,739	8,527	5,657	4,073	-742	-1,354	-244
Wet Water Years (32%)	24	-1,504	4,360	15,820	19,022	18,519	15,557	10,748	8,575	1,009	-1,809	30
Above Normal Water Years (9%)	964	-2,397	-1,722	6,379	8,946	9,316	7,810	4,424	3,827	-1,784	-3,143	1,216
Below Normal Water Years (20%)	370	-1,982	-798	1,972	5,800	6,248	7,669	4,669	2,132	-2,838	-3,455	-1,838
Dry Water Years (21%)	380	-1,957	-975	-308	2,274	2,362	4,051	2,789	1,077	-2,590	-189	-406
Critical Water Years (18%)	599	-311	-608	-30	831	1,273	2,561	1,668	1,844	1,151	1,325	500

Table 4B-2-9-1c. Qwest, Proposed Project 082624 minus Baseline Conditions 082624, Monthly Flow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	214	27	-42	29	-272	-178	-26	-1,532	365	-6	0	-713
20% Exceedance	-20	0	-17	93	115	716	-496	-2,000	634	-18	-110	-204
30% Exceedance	65	-156	-40	97	162	91	-1,391	-1,284	569	-71	-423	-339
40% Exceedance	45	8	-78	243	371	170	-908	-927	585	-105	-603	-183
50% Exceedance	42	-61	2	303	457	348	-426	-893	203	-109	-696	-141
60% Exceedance	101	20	-294	-191	736	732	-197	-784	502	-397	-404	-223
70% Exceedance	99	4	3	-44	391	377	220	-162	461	-316	-505	-284
80% Exceedance	5	-2	128	133	641	247	107	-260	411	-151	-337	-66
90% Exceedance	-36	-56	303	41	316	524	100	-222	484	-44	-281	35
Full Simulation Period Average ^a	69	18	-10	106	361	227	-245	-704	442	-130	-304	-191
Wet Water Years (32%)	88	58	-54	124	79	-302	-451	-906	599	-97	-398	-784
Above Normal Water Years (9%)	226	6	-152	181	410	429	-519	-1,085	762	-431	-596	-178
Below Normal Water Years (20%)	154	-35	4	179	482	735	-359	-1,107	548	-99	-303	255
Dry Water Years (21%)	-57	-32	138	9	589	561	178	-295	395	-208	-267	103
Critical Water Years (18%)	8	67	-49	67	435	113	-107	-186	-59	19	-37	21

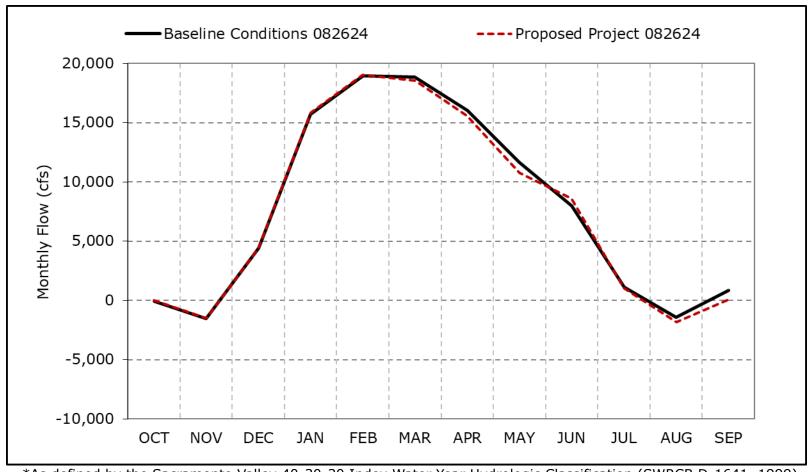

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*} Water Year Types results are displayed with water year - year type sorting.

Figure 4B-2-9a. Qwest, Long-Term Average Flow

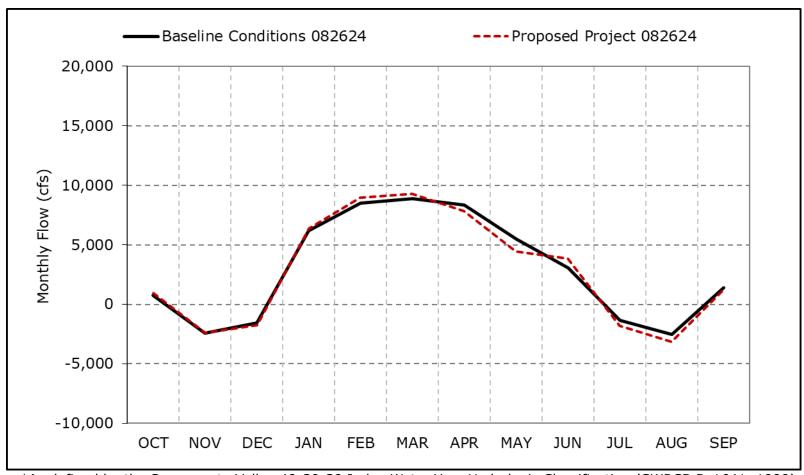


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9b. Qwest, Wet Year Average Flow

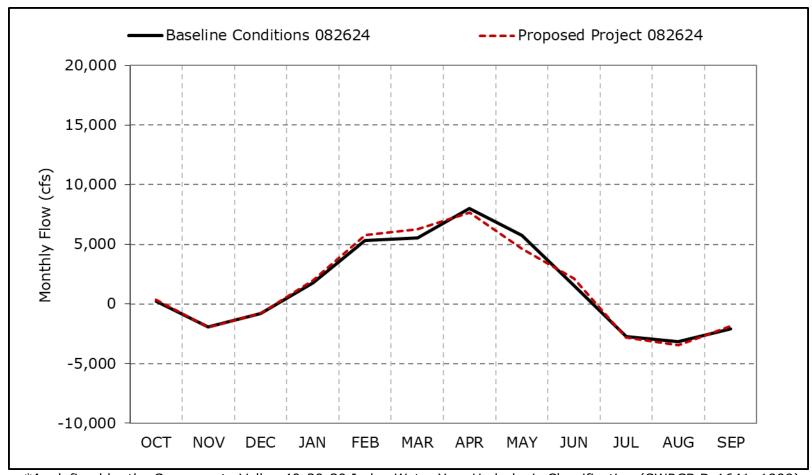


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9c. Qwest, Above Normal Year Average Flow

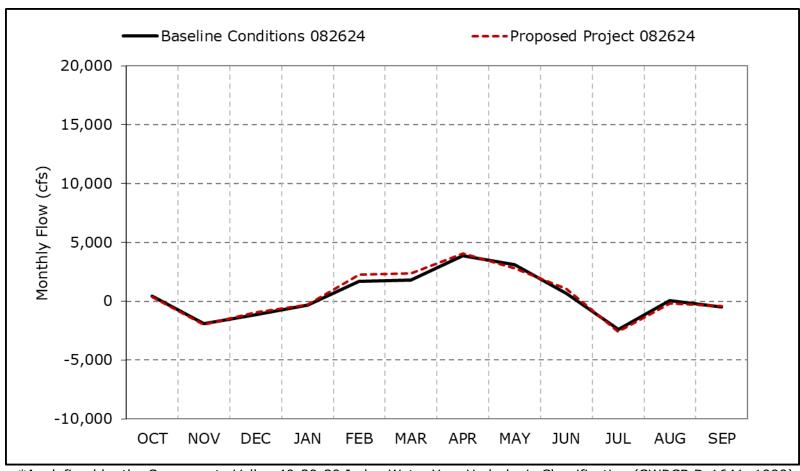


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9d. Qwest, Below Normal Year Average Flow

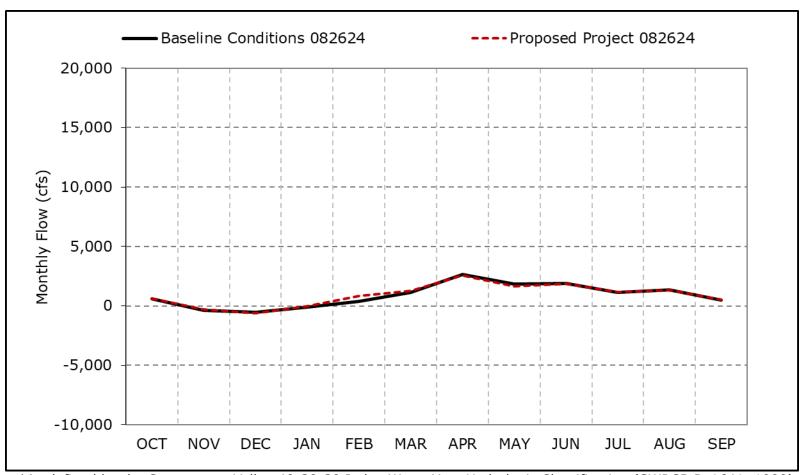


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9e. Qwest, Dry Year Average Flow

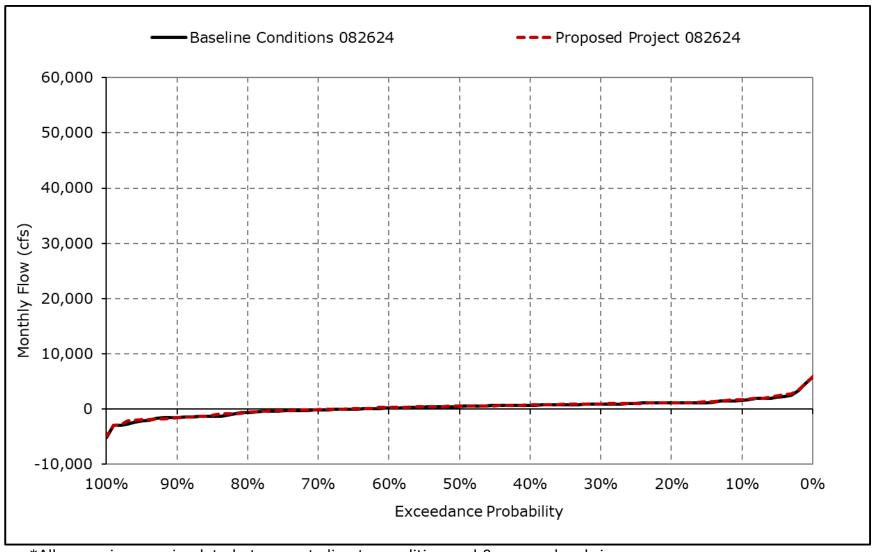


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9f. Qwest, Critical Year Average Flow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9g. Qwest, October

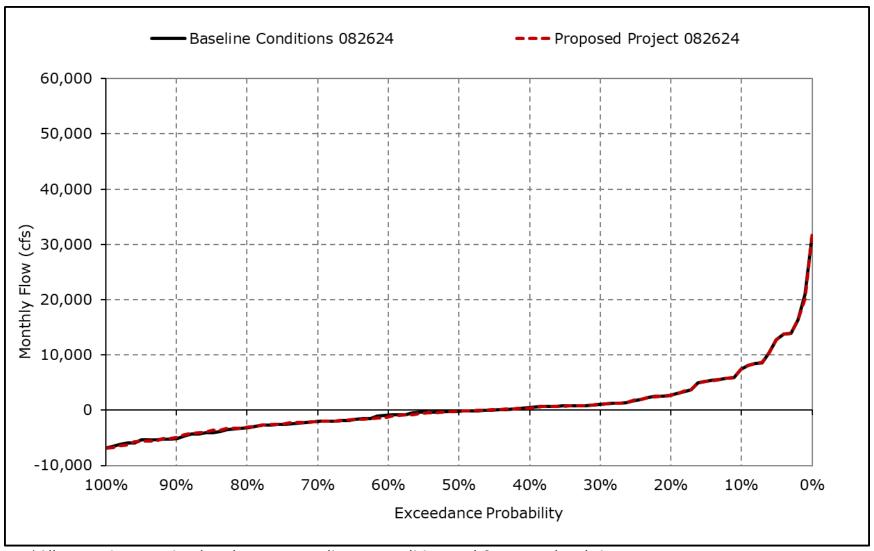

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9h. Qwest, November

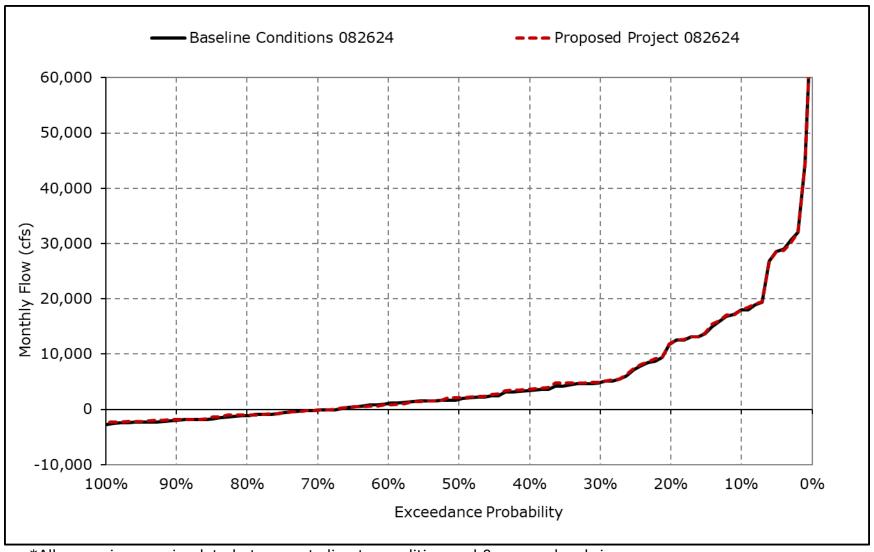

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9i. Qwest, December

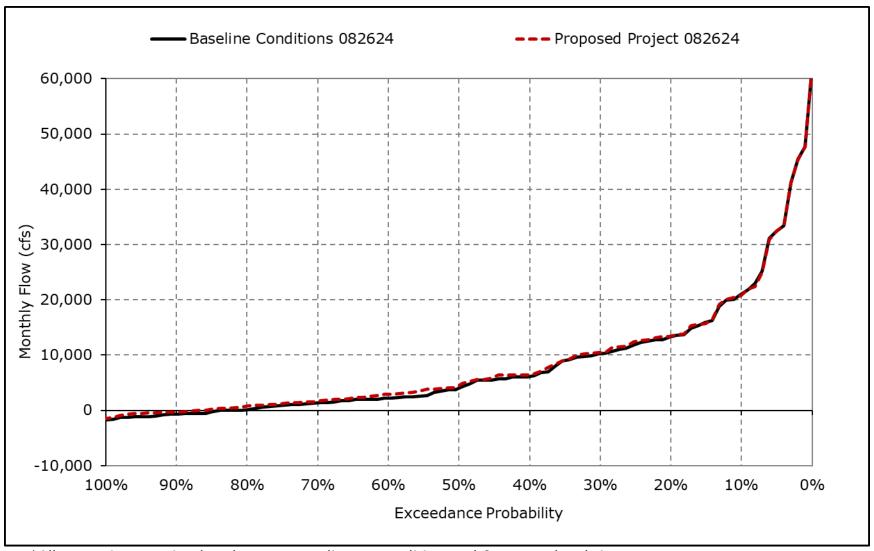

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9j. Qwest, January

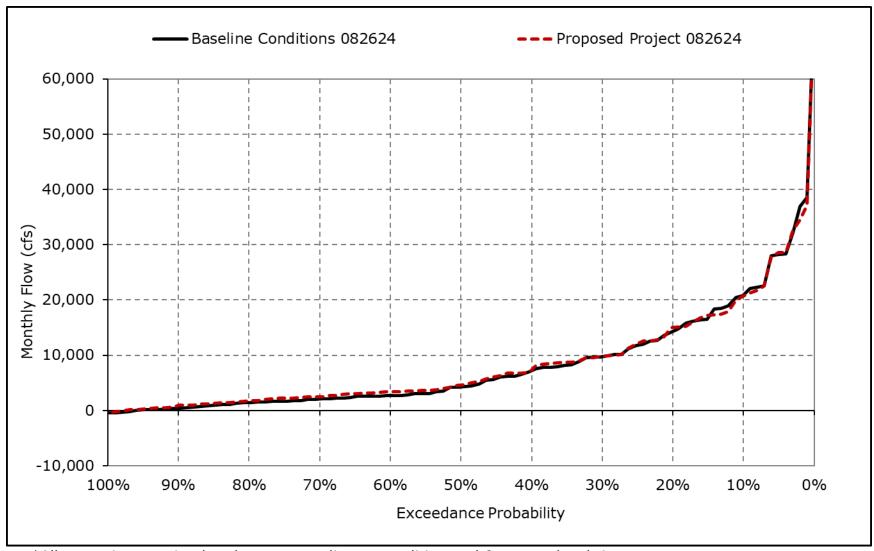

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9k. Qwest, February

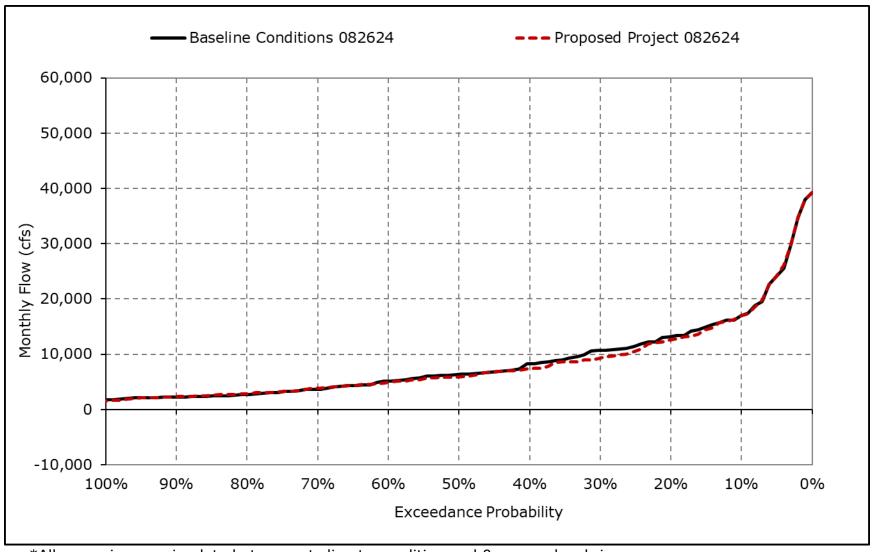

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9l. Qwest, March

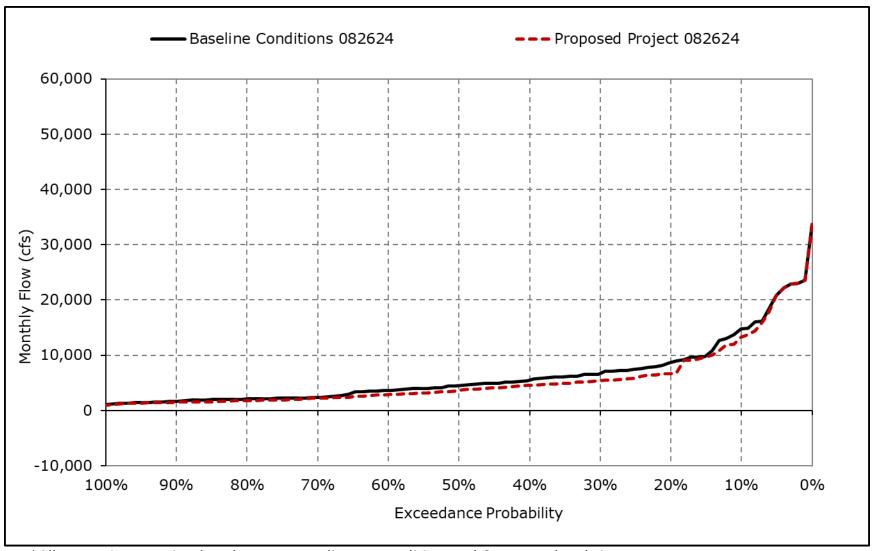

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9m. Qwest, April

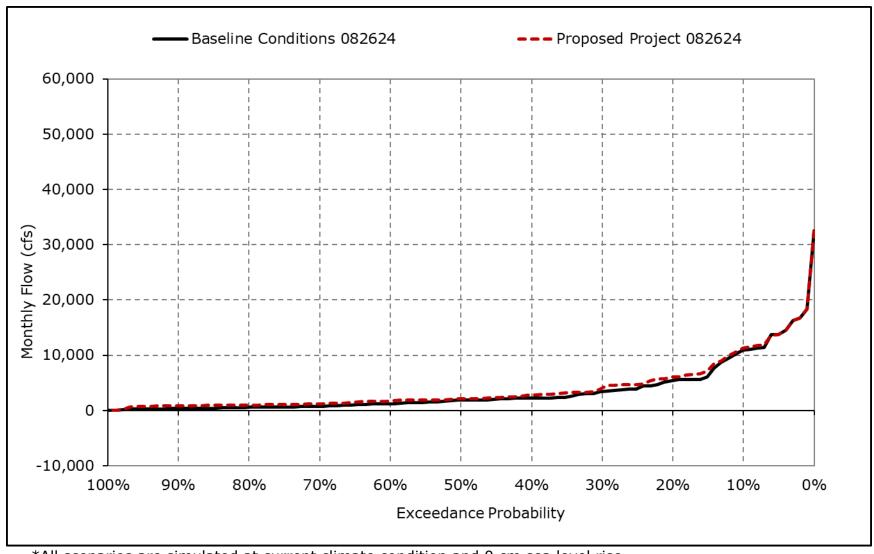

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9n. Qwest, May

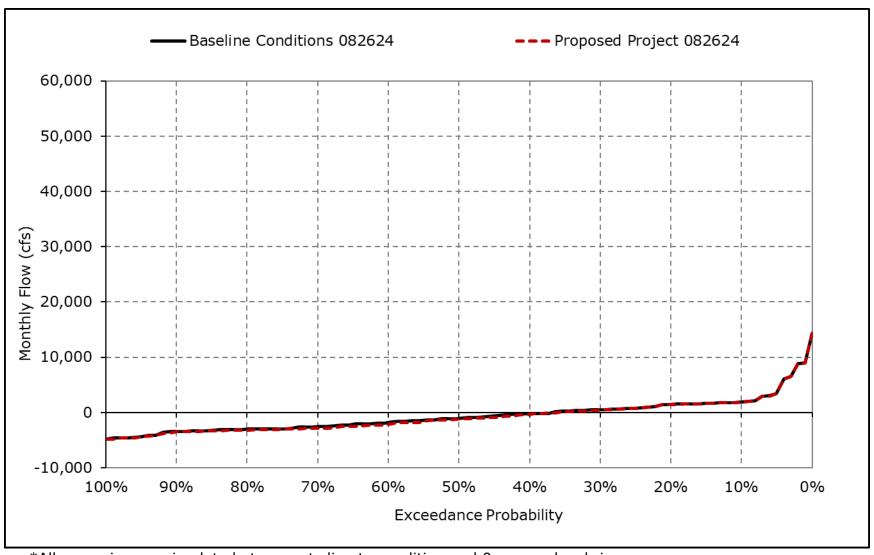

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9o. Qwest, June

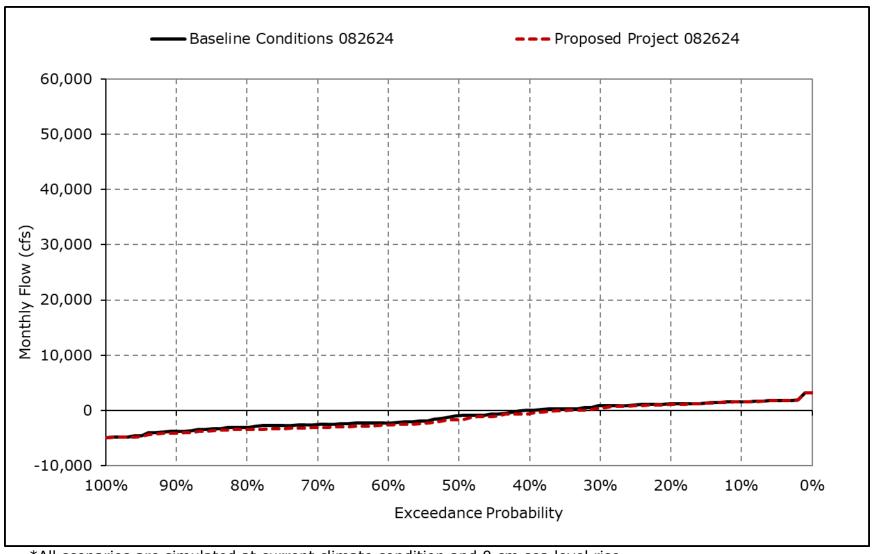

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9p. Qwest, July

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9q. Qwest, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-9r. Qwest, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Table 4B-2-10-1a. Delta Outflow, Baseline Conditions 082624, Monthly Outflow (cfs)

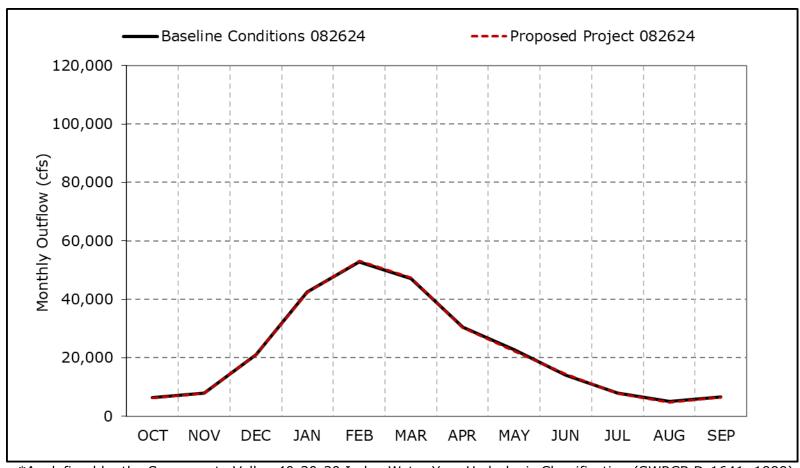
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	8,438	13,624	59,011	112,525	128,285	113,467	67,792	53,491	30,424	11,561	7,017	10,313
20% Exceedance	8,125	7,620	32,860	72,643	82,060	69,795	47,729	35,950	20,512	9,699	6,189	10,156
30% Exceedance	7,969	6,523	20,116	39,101	59,783	52,002	30,353	24,404	12,184	9,053	5,659	10,000
40% Exceedance	7,410	6,042	12,428	28,243	43,041	41,303	24,709	18,883	8,736	8,512	5,488	9,074
50% Exceedance	4,834	5,708	8,699	20,615	30,591	28,115	19,003	15,082	7,277	8,104	4,445	4,063
60% Exceedance	4,110	5,557	7,579	15,265	23,586	22,079	15,133	12,221	7,100	6,522	4,000	3,363
70% Exceedance	4,000	5,121	6,728	12,146	17,910	17,542	12,270	10,627	6,856	5,078	3,979	3,000
80% Exceedance	4,000	4,782	5,931	8,989	12,959	13,029	10,835	9,334	6,081	5,000	3,500	3,000
90% Exceedance	3,000	4,500	5,126	7,694	10,210	9,626	9,551	6,727	4,000	4,000	3,000	3,000
Full Simulation Period Average ^a	6,352	7,865	21,002	42,437	52,812	47,134	30,428	22,855	13,987	8,027	5,119	6,521
Wet Water Years (32%)	7,745	11,099	39,990	89,212	105,597	93,358	58,766	41,598	27,036	11,668	7,242	11,223
Above Normal Water Years (9%)	6,386	6,784	16,470	51,796	54,040	53,952	29,011	24,476	14,645	9,746	6,338	10,254
Below Normal Water Years (20%)	6,331	6,484	12,969	22,072	35,101	31,308	22,225	18,703	8,338	8,053	4,286	3,845
Dry Water Years (21%)	5,797	6,817	12,536	13,473	22,336	19,338	13,514	11,380	6,903	5,165	3,941	3,321
Critical Water Years (18%)	4,530	5,411	8,318	11,023	13,594	11,564	9,606	6,725	5,000	4,004	3,033	3,002

Table 4B-2-10-1b. Delta Outflow, Proposed Project 082624, Monthly Outflow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	8,594	13,505	58,764	111,359	128,097	113,857	67,576	53,050	31,321	11,018	6,113	10,999
20% Exceedance	8,125	7,551	32,831	72,757	81,468	69,492	46,269	35,115	21,375	9,178	5,541	10,315
30% Exceedance	7,813	6,554	20,069	39,424	59,552	52,445	29,281	22,815	13,154	9,003	5,369	10,076
40% Exceedance	7,813	6,108	12,398	28,687	43,434	41,154	24,065	16,985	9,195	8,191	5,166	8,926
50% Exceedance	4,948	5,807	8,925	21,187	31,186	28,662	19,130	14,524	7,600	7,624	4,000	3,902
60% Exceedance	4,087	5,561	7,452	15,439	23,961	22,812	15,209	11,740	7,100	6,522	4,000	3,495
70% Exceedance	4,000	5,119	6,776	11,116	18,912	18,388	12,295	10,614	7,031	5,021	3,500	3,008
80% Exceedance	4,000	4,771	5,960	9,448	13,602	13,836	11,174	9,438	6,698	5,000	3,500	3,000
90% Exceedance	3,000	4,500	5,153	7,786	10,387	9,579	9,518	6,513	4,000	4,000	3,000	3,000
Full Simulation Period Average ^a	6,384	7,869	20,997	42,531	53,129	47,448	30,317	22,222	14,371	7,837	4,865	6,524
Wet Water Years (32%)	7,753	11,123	39,962	89,342	105,756	93,064	58,305	40,691	27,638	11,545	6,885	10,985
Above Normal Water Years (9%)	6,550	6,695	16,260	51,953	54,372	54,604	28,644	23,562	15,403	9,297	5,615	11,150
Below Normal Water Years (20%)	6,412	6,435	13,080	22,178	35,447	32,251	22,235	17,570	8,811	7,660	4,254	3,724
Dry Water Years (21%)	5,762	6,820	12,590	13,507	22,774	20,047	13,937	11,367	7,038	5,016	3,616	3,431
Critical Water Years (18%)	4,558	5,487	8,252	11,076	14,008	11,627	9,486	6,552	5,000	4,004	3,034	3,002

Table 4B-2-10-1c. Delta Outflow, Proposed Project 082624 minus Baseline Conditions 082624, Monthly Outflow (cfs)

Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
10% Exceedance	156	-119	-247	-1,167	-187	389	-216	-441	897	-543	-904	687
20% Exceedance	0	-69	-29	114	-592	-303	-1,460	-835	863	-521	-648	159
30% Exceedance	-156	31	-46	324	-231	443	-1,072	-1,589	970	-51	-290	76
40% Exceedance	403	66	-30	444	393	-149	-644	-1,898	459	-321	-322	-148
50% Exceedance	115	99	226	572	596	546	127	-558	322	-480	-445	-160
60% Exceedance	-23	4	-127	174	375	733	76	-481	0	0	0	132
70% Exceedance	0	-3	48	-1,030	1,002	845	25	-13	175	-57	-479	8
80% Exceedance	0	-11	29	459	643	807	339	103	617	0	0	0
90% Exceedance	0	0	27	92	178	-47	-33	-214	0	0	0	0
Full Simulation Period Average ^a	31	4	-6	93	316	314	-111	-633	384	-189	-254	3
Wet Water Years (32%)	8	24	-28	130	158	-293	-461	-908	602	-123	-358	-238
Above Normal Water Years (9%)	165	-89	-210	157	332	651	-367	-914	759	-449	-723	895
Below Normal Water Years (20%)	80	-50	111	105	346	943	11	-1,134	473	-392	-32	-120
Dry Water Years (21%)	-34	3	54	34	439	709	423	-13	135	-149	-325	110
Critical Water Years (18%)	28	75	-66	53	414	63	-120	-174	0	0	1	0

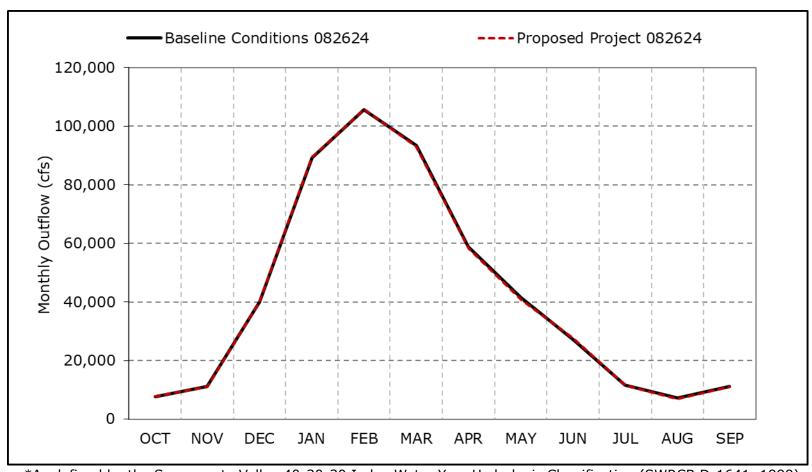

^a Based on the 100-year simulation period.

^{*} All scenarios are simulated at current climate condition and 0 cm sea level rise.

^{*} Water Year Types defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

 $[\]ensuremath{^{*}}$ Water Year Types results are displayed with water year - year type sorting.

Figure 4B-2-10a. Delta Outflow, Long-Term Average Outflow

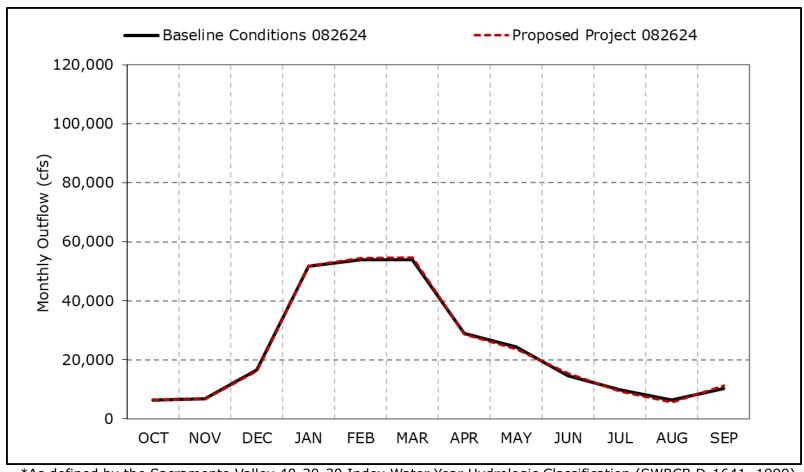


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10b. Delta Outflow, Wet Year Average Outflow

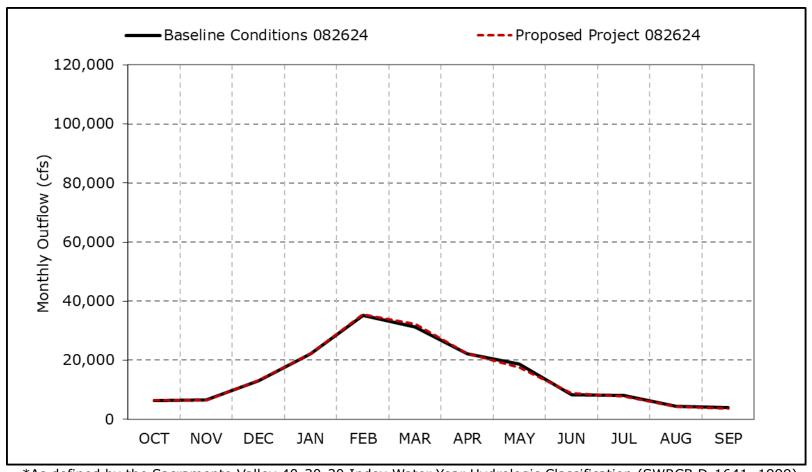


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10c. Delta Outflow, Above Normal Year Average Outflow

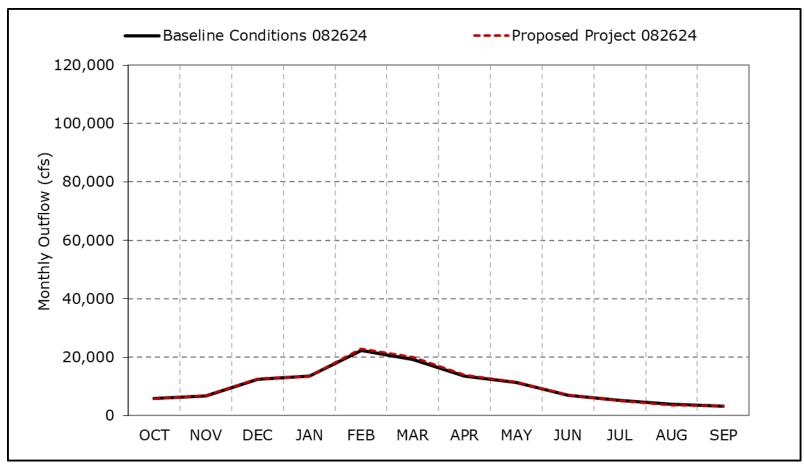


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10d. Delta Outflow, Below Normal Year Average Outflow

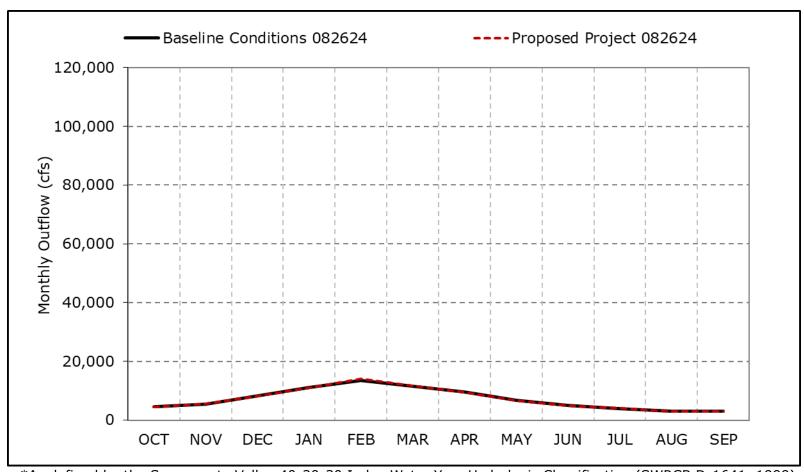


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10e. Delta Outflow, Dry Year Average Outflow

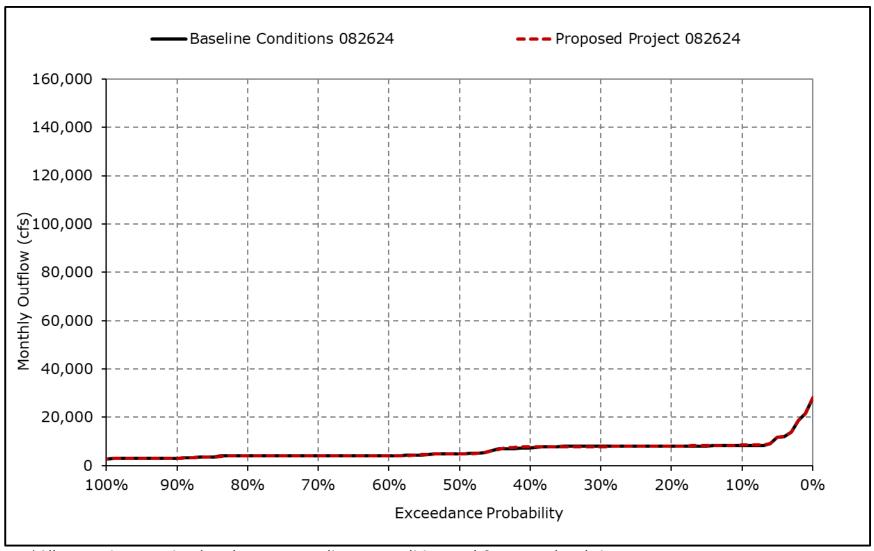


^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10f. Delta Outflow, Critical Year Average Outflow



^{*}As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999).

^{*}These results are displayed with water year - year type sorting.

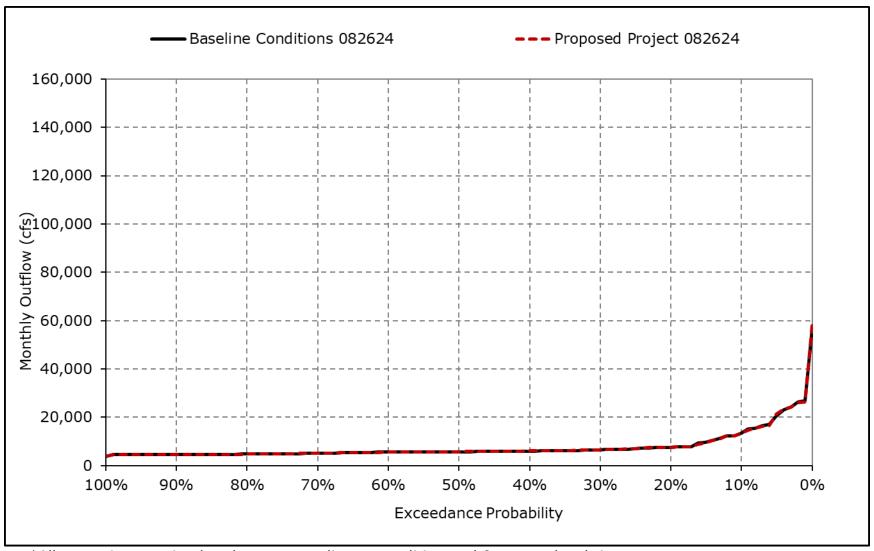

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10g. Delta Outflow, October

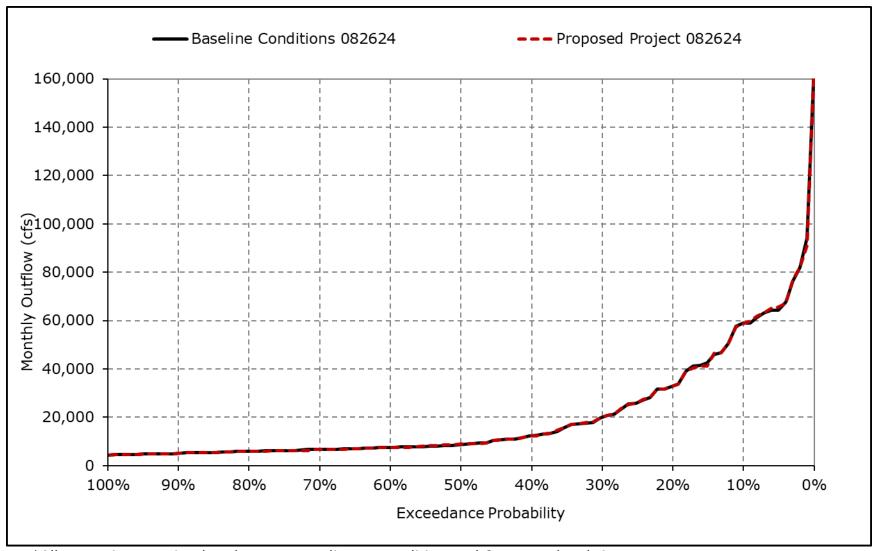

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10h. Delta Outflow, November

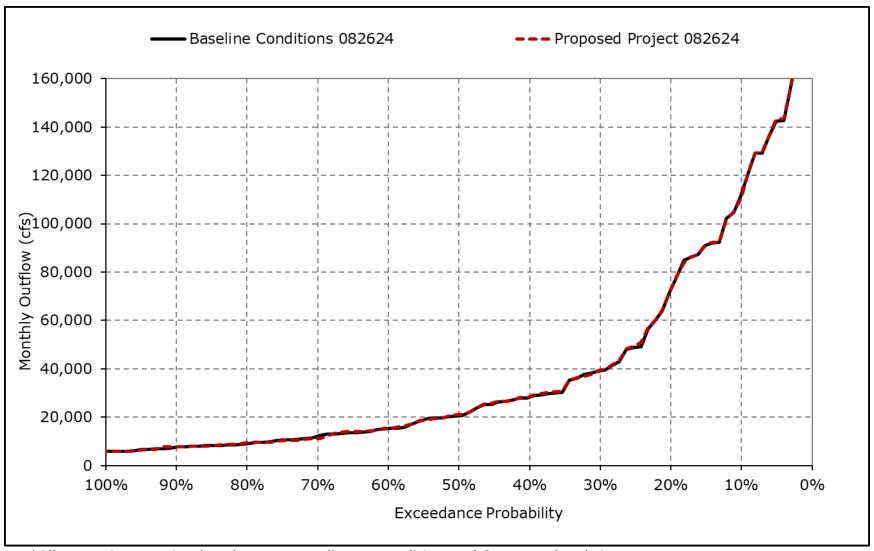

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10i. Delta Outflow, December

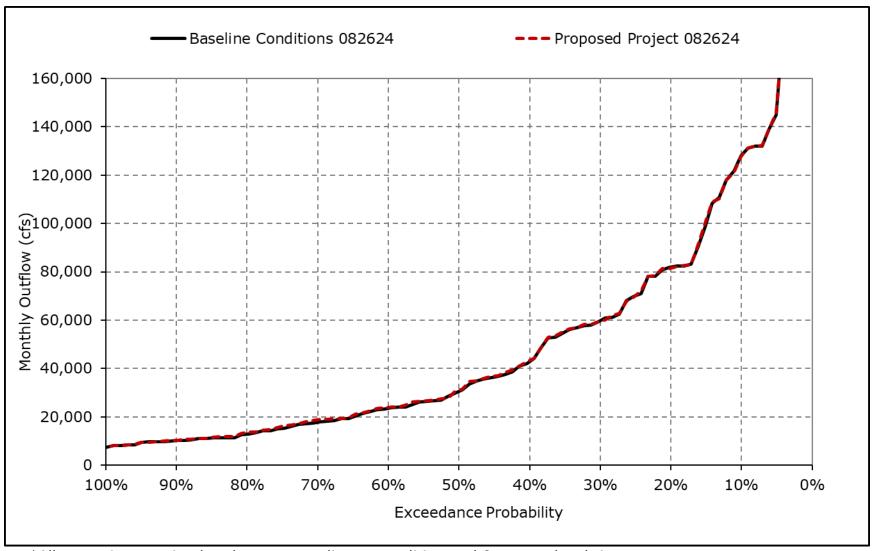

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10j. Delta Outflow, January

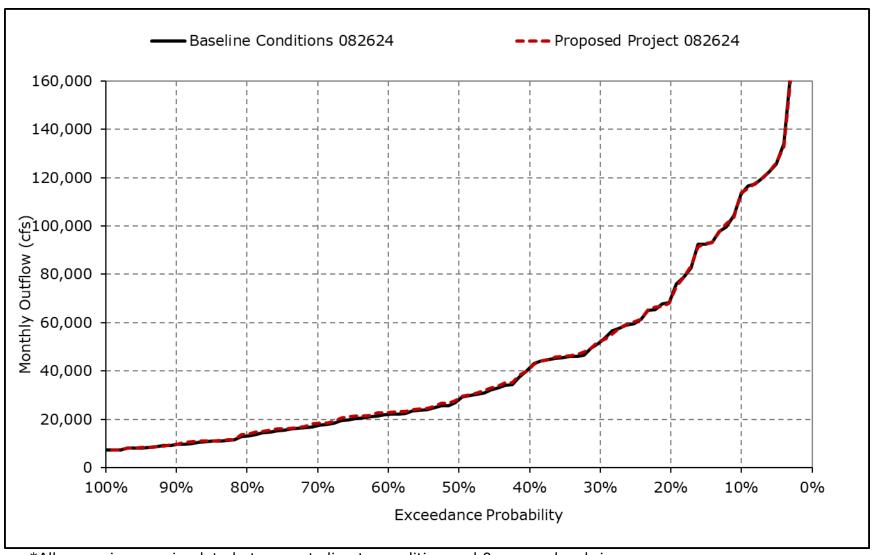

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10k. Delta Outflow, February

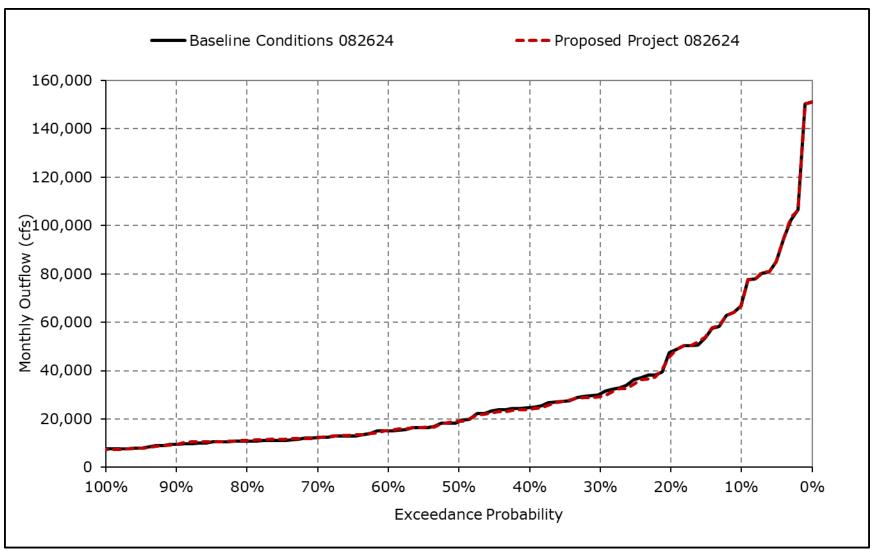

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10l. Delta Outflow, March

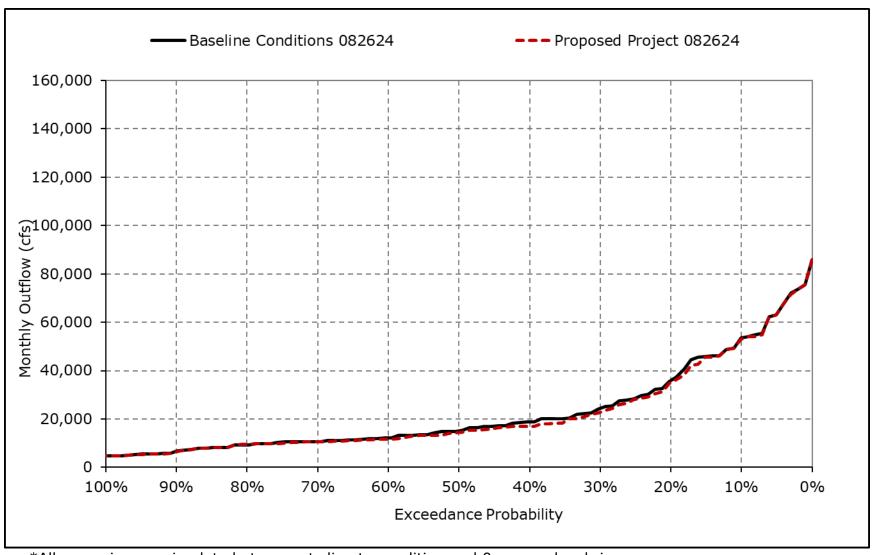

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10m. Delta Outflow, April

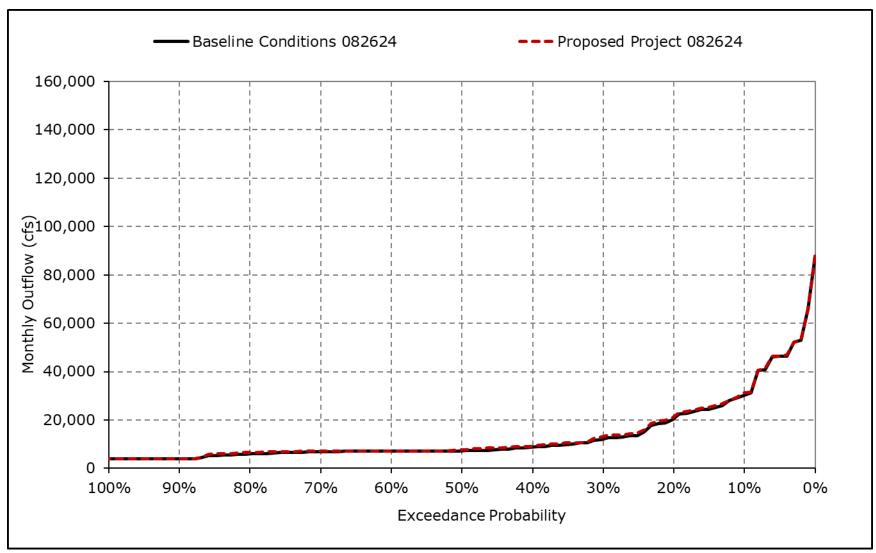

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10n. Delta Outflow, May

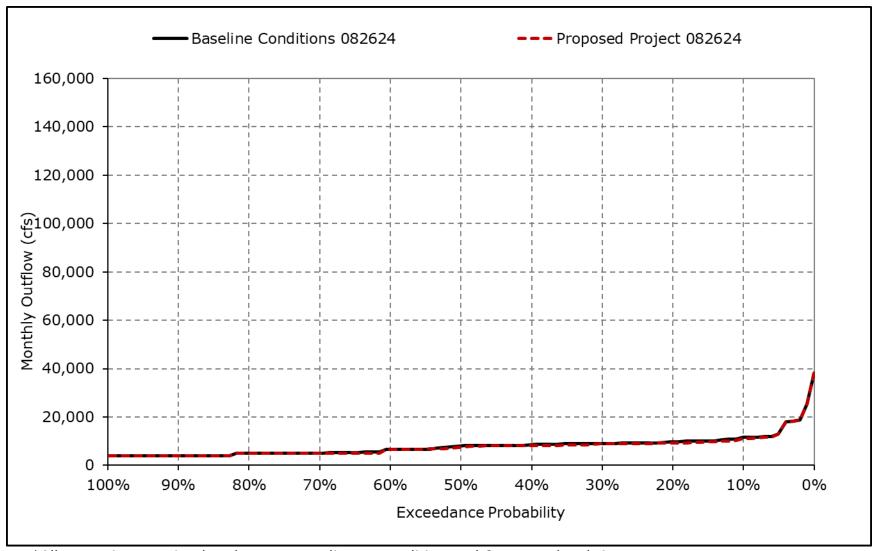

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10o. Delta Outflow, June

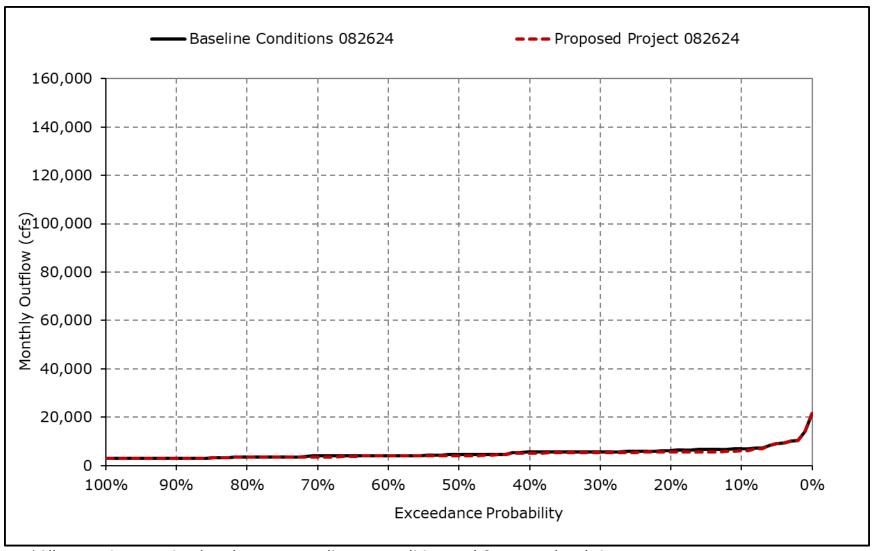

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10p. Delta Outflow, July

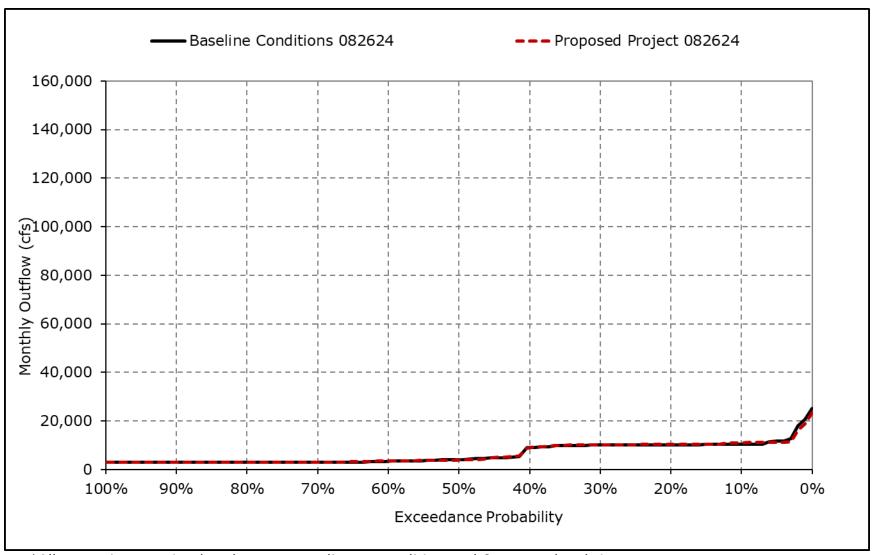

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10q. Delta Outflow, August

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.

Figure 4B-2-10r. Delta Outflow, September

^{*}All scenarios are simulated at current climate condition and 0 cm sea level rise.