

Flood Managed Aquifer Recharge Merced Watershed Study

California Water Commission October 21, 2020

California's Water Management A Tale of Extremes

Sustainability Requires Big Collaboration, Agency Alignment & Sector Co-Management

Integrated Watershed Management

 \sim

Multi-Sector Collaboration

Multi-Discipline Planning

Multi-Benefit Projects

Multi-Fund Investments

WATER QUALITY

FLOOD

ECOSYSTEM

GROUNDWATER

SUSTAINABILITY

WATER SUPPLY RELIABILITY

PEOPLE AND WATER

Flood-MAR Epitomizes IWM

An integrated strategy to manage water resources for sustainability & climate resiliency ...

... using high flows from (or in anticipation of) rainfall or snowmelt for managed aquifer recharge ...

... on agricultural lands, working landscapes, and natural managed lands

WATER RESOURCES

State Recommends Flood-MAR

- 2017 CV Flood Protection Plan Update (Aug. 2017)
- System Reoperation Study Phase 3 Report (Aug. 2017)
- State Board of Food & Agriculture letter (May 2018)
- Final CA Water Plan Update 2018 (July 2019)
- Final Water Resilience Portfolio (July 2020)

Flood-MAR is

- ... voluntary (public-private partnerships among private landowners, public agencies, and governments)
- ... multi-sector (co-management of flood, surface & groundwater, ecosystem & quality)
- ... scalable (on-farm, GSA, basin, region, watershed)
- ... multi-faceted (reoperation, conveyance, storage, recharge, banking, transfers, cultivation, restoration, etc.)
- ... untapped part of California's water portfolio

Forecast-Informed Reservoir Operations

Reservoir Recharge Pool

New/Expanded Conveyance to Recharge Areas

> New/Expanded Flood ypasses & Floodplains

New / Expanded **Reservoir Outlet Works**

A AME

Suitable Recharge Areas on **Agricultural Lands and Working Landscapes**

Landowner Compensation & **Recharge Credits**

Suitable Recharge **Methods**

Suitable Aquifers

Terrestrial & Aquatic Ecosystem Enhancement

A Headwater to **Groundwater Strategy**

Example Flood-MAR Projects & Activities

2019 Flood-MAR Forum Actions to Move from Concept to Implementation

- 1. Create partnerships & opportunities for collaboration
- 2. Increase agency cooperation & alignment
- 3. Increase flexibility for water managers
- 4. Design pilot projects & research studies to fill data gaps
- 5. Increase technical support & streamline funding for landowners & local agencies

Flood-MAR Activities at DWR

Watershed Studies

- Merced Study
- Tuolumne Study

Flood-MAR Network

Guidance

- White Paper
- R&DD Plan
- Technical Memos

WATER RESOURCES

- Watershed
- GSA / District
- On-Farm

MERCED RIVER WATERSHED FLOOD-MAR RECONNAISSANCE STUDY

DAVID ARRATE

OCTOBER 21ST, 2020

Study Purpose & Goals

- Proof of concept study: Investigate Flood-MAR concepts on a watershed scale
- Integrated Watershed Modeling Integrated headwater to groundwater toolset and analyses
- Assess multi-benefits, economics, and climate change towards Sustainable & Integrated Resource Management
- Template for future studies and projects Document the process of planning, modeling, and analyzing a Flood-MAR project of this scale

Climate Change

- **Decision Scaling** ightarrowMethodology
- 30 climate scenarios
 - 0° to 4° Celsius increase in temperature
 - -20% to +30% change in precipitation
- 100 years of hydrology - 1900 to 1999

Annual Average Lake McClure Inflow Volume = 1.0 MAF

Baseline & Flood-MAR Implementation Levels

- Baseline Climate Vulnerability Analysis
- Level 1 Existing Infrastructure & Existing Operations
- Level 2 Existing Infrastructure & Reservoir Reoperations
- Level 3 New/Expanded Infrastructure & **Reservoir Reoperations**

Climate Vulnerability Analysis Example Result – Peak Merced River Flow ullet

Flood-MAR Level 1 Scenarios

	Initial	Intermediate	Robust
Description	SWRCB Streamline Permitting Guidelines	Expanded Initial Scenario	Max bookend scenario
Flow Trigger	Daily 90 th % Flow	Monthly 90 th % Flow	Minimum Instream + Buffer
Diversion Amount	Up to 20% of total flow	Any flow above trigger	Any flow above trigger
Timeframe	December to March	November to March	November to March
Recharge Type	Canal-Only	Canal & On-Farm	Canal & On-Farm

- Delta Conditions Check Flood-MAR triggers when Delta is in ightarrowexcess conditions
- Maximize Flood-MAR recharge while assessing multiple benefits ightarrow

Level 1 - Intermediate Scenario Results

ຕ Volume Cumulative Total

Level 1 - Intermediate Scenario Results **Total Flood-MAR for 100yr study period** 4,649,278 AF **Flood-MAR WAFR:** 1,995,855 AF **Canal Seepage: Recharge Basins:** 34,098 AF 2,244,905 AF **On Farm:** 374,420 AF **Unused WAFR:** 4,274,858 AF **Total Recharge: Avg Annual Recharge:** ~43 TAF/yr

Fate of Recharge – Change in Storage

Cumulative change in

Modeling Beyond Study Area

Rainfall Runoff Sac-SMA

System Operations CalLite

Groundwater Operations FM2SIM

District Service Area

Soil Suitability

Depth to Groundwater

	Merced Study Area	
	Rivers & Creeks	
Dep	th to Groundwate	er (ft)
	< 10	
	10 - 20	
	20 - 30	
	30 - 40	
	40 - 50	
	50 - 60	
	60+	

Depth to Corcoran Clay

Subsurface Permeability

Land Use

Potential Recharge Sites

Reservoir Operations HEC-ResSim (MIDH2O)

Rainfall Runoff (Creeks) HEC-HMS (MIDH2O)

Streamflow HEC-RAS (MIDH2O)

Flood Damage HEC-FIA

METRICS

- Evaluate basin-wide performance under current and future climates
 - flood risk 1.
 - 2. water supply
 - surface water conditions
 - groundwater conditions
 - 3. ecosystem management
- Vulnerability to climate change
- Assess benefits of Flood-MAR projects
- Determine effectiveness of FloodulletMAR strategies (adaptation & mitigation potential)

food production and temporary habitat opportunities

SUMMARY DASHBOARD EXAMPLE

CATEGORY	METRIC	INDICATOR	Units	
	Merced River flow at	Number of days above 6000 cfs	Days	
Flood Risk	Shaffer Bridge	100-year peak flow	CFS	
Reduction	Flood space at Lake	100-year maximum flood space encroachment	TAF	Lake McClure fl
		Average annual runoff	TAF	
	Upper watershed runoff into Merced	Average seasonal runoff between November 1st and March 31st.	TAF	Up
	River basin	Average seasonal runoff between April 1st and October 30th.	TAF	
		Average annual demand	TAF	
	Agricultural applied water demand	Met by surface water deliveries	TAF	Agricultural a
Water		Met by groundwater pumping	TAF	
Supply		March 1st - Beginning of the irrigation season	TAF	
	Storage at Lake McClure	June 30th - End of snowmelt runoff season	TAF	Surfa
		October 31st - End of the irrigation season	TAF	
	Merced ID's Allocation	Number of drought years (allocation below 80%)	Years	
	Basin-wide annual change in GW storage	Average annual	TAF	Gro

Merced River Flow lood space encroachment Flood Risk

Water

Supply

per watershed runoff

pplied water demand

ace Water Conditions Reservoir storage MID's Allocation

oundwater conditions

SUMMARY DASHBOARD EXAMPLE

Absolute Values

CATEGORY	METRIC	INDICATOR	Units	Baseline	Level 1 Initial	Level 1 Intermediate
Flood Riskon	Merced River flow at Shaffer Bridge FI Lake McClur McClure	Number of days above 6000 cfs 100-year peak fi Merced River i e flood space encroachi encroachment	Days Flow ment TAF			
	Upper watershed runoff into Merced River basin	Average annual runoff Average seasonal runoff between November 1st a Upper watershed r Average seasonal runoff between April 1st and October 30th.	TAF runoff TAF			
Water	Agricultural applied water demand	Average annual demand Agricultural applied water der Met by groundwater pumping	TAF mand TAF	A	BSOLU [.] VALUES	TE S
Supply	Storage at Lake McClure	March 1st - Beginning of the irrigation season June 30th - Surface Water Conditions Reservoir storage				
	Merced ID's Allocation Basin-wide annual	October 31st - End of MD'S Alloca Number of drought years (allocation below 80%)	Years			
		Average annua Groundwater condi	tions	l.		

CHANGE RELATIVE TO THE BASELINE SCENARIO UNDER CURRENT CLIMATE CONDITIONS.

Effect of climate change on baseline scenario under current climate conditions.

				Absolute Values			Change Relative to Current Conditions		Percent Change Relative to Current Conditions	
CATEGORY	METRIC	INDICATOR	Units	Current Conditions	2040	2070	2040	2070	2040	2070
	Merced River flow at	Number of days above 6000 cfs	Days	0	48	180	48	180		
Flood Risk	Shaffer Bridge	100-year peak flow	CFS	^{6,} Flood	risk incre	eases s	1 ificantl	y with cl	imate cha	nge ^{22%}
	Flood space at Lake McClure	100-year maximum flood space encroachment	TAF	212	268	291	56	79	26%	37%
		Average annual runoff	TAF	1,123	1,138 No.ch	1,161	15	38 appual r		3%
	Upper watershed runoff into Merced River basin	Average seasonal runoff between November 1st and March 31st.	TAF	Howeve	r, expect	to see a	a shift in r	unoff til	2 g from	spring/
		Average seasonal runoff between April 1st and October 30th.	TAF	689	610Sumr	mer mor	nths to wi	nter mor	n <mark>h</mark> s.	-21%
		Average annual demand	TAF	798	833	857	3) 35	59	4%	7%
	Agricultural applied water demand	Met by surface water deliveries	TAF	4 355 ASSU	<u>Imiliy zu</u>	tive day	use is ma	aintaineo	<u>, agriculu</u>	
Water		Met by groundwater pumping	TAF	466	494	515	5 28	49	6%	11%
Supply	Storage at Lake McClure	March 1st - Beginning of the irrigation season	TAF	578	576	574	-2	-4		-1%
· ·		June 30th - End of snowmelt runoff season	TAF	levels	diversion	ns at the	e detrimer	nt of res	ervoir stor	age.
		October 31st - End of the irrigation season	TAF	518	479	436	-39	-82	4 -8%	-16%
	Merced ID's Allocation	Number of drought years (allocation below 80%)	Years	Assumir in der	ng no lan mand is n	<u>d is take</u> net by a	en out of dditional	producti aroundy	<u>on</u> , any in vater pum	crease ping
	Basin-wide annual change in GW storage	Average annual	TAF	-49 whic	h will exa	acerba	5 le exis	ting ove	rdraft issu	es.10%

Effect of climate change on baseline scenario under current climate conditions.

				Absolute Values			Change Relative to Current Conditions		Percent Change Relative to Current Conditions	
CATEGORY	METRIC	INDICATOR	Units	Current Conditions	2040	2070	2040	2070	2040	2070
	Merced River flow at Shaffer Bridge	Number of days above 6000 cfs	Days	0	48	180	48	180		
Flood Risk		100-year peak flow	CFS	6,000	12,497	19,339	1 6,497	13,339	108%	222%
Reduction	Flood space at Lake McClure	100-year maximum flood space encroachment	TAF	212	268	291	56	79	26%	37%
	Upper watershed runoff into Merced River basin	Average annual runoff	TAF	1,123	1,138	1,161	15	38	1%	3%
Water Supply		Average seasonal runoff between November 1st and March 31st.	TAF	434	528	619	94	185	2 22%	43%
		Average seasonal runoff between April 1st and October 30th.	TAF	689	610	542	-79	-147	-11%	-21%
	Agricultural applied water demand	Average annual demand	TAF	798	833	857	3 35	59	4%	7%
		Met by surface water deliveries	TAF	4 355	359	359	4	4	1%	1%
		Met by groundwater pumping	TAF	466	494	515	5 <u>28</u>	49	6%	11%
	Storage at Lake McClure	March 1st - Beginning of the irrigation season	TAF	578	576	574	-2	-4	0%	-1%
		June 30th - End of snowmelt runoff season	TAF	813	776	734	-37	-79	-5%	-10%
		October 31st - End of the irrigation season	TAF	518	479	436	-39	-82 4	-8%	-16%
	Merced ID's Allocation	Number of drought years (allocation below 80%)	Years	7	10	13	3	6	43%	86%
	Basin-wide annual change in GW storage	Average annual	TAF	-49	-80	-103	5 -31	-54	63%	110%

Questions & Comments

David Arrate DWR Division of Planning CA Dept. of Water Resources

FloodMAR@water.ca.gov

www.water.ca.gov/Programs/All-Programs/Flood-MAR