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1 Introduction 
In the interior southern Delta, elevated levels of salinity (specific conductance [EC] level 
exceeding 1,000 milliSiemens per centimeter [mS/cm])1 have been measured by a monitoring 
station located on Old River at Tracy Road Bridge (OLD) and intermittently have exceeded 
objectives set forth in the 2006 Water Quality Control Plan for the San Francisco 
Bay/Sacramento–San Joaquin Delta Estuary (Bay–Delta Plan)2. The high ambient salinity 
compromises the ability of the interior southern Delta system to supply water for drinking, crop 
irrigation, recharging ground water, and diluting high-salinity plumes. High levels of salinity 
have been attributed to many causes, including mass loadings from the San Joaquin River (State 
Water Board 1980), as well as local salinity sources along the Old River and its tributaries of 
Tom Paine Slough, Paradise Cut, and Sugar Cut (ICF 2016; Montoya 2007, 2012). 
Redistribution of this salt is the result of tides, net circulation patterns induced by temporary 
barriers, and the seasonal and operational influences of San Joaquin River inflow. 

Roughly 50 discharges were identified during transect studies that occurred in 2007 (see Table 2-
1 in Montoya 2007) and 2012 (see Table 1, 2 in Montoya 2012) downstream of Old River Head 
on Old River and its tributaries, including point source discharges from three major 
municipal/industrial wastewater treatment plants (Manteca, City of Tracy, and Deuel Vocational 
Institute), agricultural drainages, and effluent groundwater. Although the plumes from the 
agricultural drains and effluent groundwater are known to be saline (350–4,500 mS/cm) due to 
the leaching of eroded, heavily mineralized, marine sedimentary rock from the Diablo Range 
(Montoya 2007), direct observations of salinity loads are generally lacking or rare in the interior 
southern Delta. Non-inclusion of such sources in a transport model of salinity can under-predict 
the salinity level in the system, which poses a challenge when using these modeling tools for 
characterizing the spatial and temporal distribution of salinity conditions, water quality 
management, and long-term planning studies for the system. 

The purpose of this study is to apply a data-assimilation approach that integrates the extensive 
continuous monitoring network already implemented by the California Department of Water 
Resources’ (DWR) North Central Regional Office’s Water Quality Evaluation Section with a 
mechanistic transport model to infer the unknown salinity loads on a reach-based level in the 
system. This approach can address the underlying causes of the high level of salinity observed in 
the interior southern Delta and, together with hydrodynamic and salinity transport models, can 
provide more realistic modeling of the spatial and temporal distribution of water level, flow, and 
salinity conditions in the interior southern Delta. 

 
1 The State Water Project (SWP) and Central Valley Project (CVP) will continue to be operated in accordance with 
Water Right Decision 1641 (D-1641) until a new water rights decision is adopted by the California State Water 
Resources Control Board (State Water Board). 
2 D-1641 and related State Water Resources Control Board communications clarify that enforcement action against 
DWR and the U.S. Bureau of Reclamation to implement the water quality objectives for agricultural beneficial uses 
in the south Delta is not appropriate where any noncompliance is the result of actions beyond the reasonable control 
of the SWP and CVP. (D-1641, p.159, para. 6; Letter from Celeste Cantú, Executive Director, State Water 
Resources Control Board, to Lester Snow, Director, DWR, re Delta Salinity Cease and Desist Order in State Water 
Board Order WR 2006-0006 (Oct. 13, 2006). 
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This technical study is complementary to other technical studies identified in Chapter 3, MSS 
Study Area and Technical Studies, of the Monitoring Special Study (MSS). The High-Speed 
Salinity Transect Mapping study has been providing frequent observational data of EC that will 
be used to validate the modeling results under various flow and gate-operation conditions. 

Data obtained from the separate Point Source and Ion Sampling Study, detailed in Attachment 2, 
MSS Salinity Point Source and Ion Sampling, of the MSS, will provide additional insight on flow 
and salinity conditions in several ways. A planned rhodamine dye experiment for Paradise Cut 
and Old River will provide insight on the net-flow directions and null zones in these reaches, 
which can be used to better constrain the hydrodynamic model and improve water quality 
modeling. Additional water quality samples taken in and around Pescadero Tract could provide 
information about salinity loads due to agricultural return flows from Pescadero Tract. This data 
will be integrated into the model to refine water quality prediction for salinity. 

In turn, the water quality data assimilation modeling, described in this workplan, will be used to 
inform regions with data gaps, types of data needed, and the observational effort required to 
reduce the uncertainties in the model. The inferred salinity loads as a data product will support 
the Bay–Delta Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM) 
three-dimensional (3D) modeling study and can also be used to support other hydrodynamic 
modeling efforts in the Delta modeling community. A more detailed description on how this 
workplan can support and benefit from existing observations and other technical studies under 
the MSS (particularly SCHISM) is illustrated on Figure 3 of Attachment 3, SCHISM 3D 
Hydrodynamic and Water Quality Modeling Work Plan. 

The products of this study will include regular progress reports, including validation results (as 
disseminated time series of estimated mass loadings), along with interpretive documentation. 

2 Background 
This study focuses on the section of Old River in the interior southern Delta that extends east–
west from the head of Old River to the channel right above the Clifton Court intake. Old River 
branches into three streams at Doughty Cut: 1) Lower Old River in the South; 2) Middle River in 
the North; and 3) Grant Line Canal in the middle (Figure 1). The freshwater flow in the Old 
River mainly originates from San Joaquin River, where the inflow ranges from 100 cubic square 
feet per second (cfs) to above 10,000 cfs. Depending on the configuration of hydraulic structures, 
roughly 35 percent of San Joaquin River (measured at Vernalis) enters the head of Old River, 
and roughly 6 percent further continues down to Lower Old River. The hydrodynamics of the 
system is strongly affected by semidiurnal tides, with its amplitude of up to 3,000 cfs on Lower 
Old River, much greater than that of the tidally averaged flow (generally 10 cfs or 100 cfs), 
except during the storm events. 



3 

 
Figure 1. Map of the Study Area Showing Old River, its Upstream Sloughs, and Three Downstream 
Branches (Middle River, Grant Line Canal, and the Lower Section of the Old River 

In addition to the freshwater inflow, the flow rates in the system are greatly altered by extensive 
water conveyance projects and hydraulic structures (Kimmerer 2004). The two major water 
projects, the federal Central Valley Project (CVP) and the State Water Project (SWP), divert a 
rough average of 3,000 cfs and 3,500 cfs, respectively, from the Delta system (shown on Figure 
1 as C.W. Bill Jones Pumping Plant and Harvey O. Banks Pumping Plant, respectively). Due to 
the gate operation and flow export, these facilities lower the water level in the vicinity of 
adjacent channels. To maintain water level for irrigation purposes during the low-flow periods, 
three temporary agricultural barriers have been implemented on each of the main streams 
(Middle River near Victoria Canal, Old River near Tracy, and Grant Line Canal at Tracy Blvd) 
during the peak irrigation season of each year since 1990. Multiple culverts (ranging from six to 
nine) with flap gates are installed on each of the temporary barriers; these are tidally operated 
when there is a need for upstream water level protection, but may also be tied open to favor 
flushing and circulation. The presence and operation of these barriers raise the upstream water 
level and reduce the mean downstream flow on Lower Old River. During low—and even during 
medium—flow periods, the barriers can cause tidally averaged flow to reverse direction in 
channels immediately adjacent and upstream (an example of this can be observed on Old River 
near Mountain House Creek [ORM]), so that net flow is mainly in the upstream direction. 

Three upstream tributaries are connected and tidally exchange with the Lower Old River (Sugar 
Cut, Tom Paine Slough, and Paradise Cut), along which water is removed for crop irrigation, and 
agricultural returns are drained back into the system. The salinity in these tributaries is often 
greater than that on the Old River due to agriculture drainage, groundwater seepage, and the lack 
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of flushing. Paradise Cut is also hydraulically connected to the upstream San Joaquin River, but 
separated by a weir that can only be overtopped when the flow rate in San Joaquin River exceeds 
roughly 17,500 cfs. The connection between Tom Paine Slough and the Lower Old River is also 
regulated by a weir with six culverts; the gates on the culverts are mostly tidally operated to only 
allow unidirectional flow into Tom Paine Slough during flood tides, but can occasionally fully 
open to allow stormwater drainage or two-way tidal flushing during non-irrigation seasons. 

Throughout the interior southern Delta, diked islands are located adjacent to the main streams 
and tributaries, which are known to exchange mass and flow with the channels through drainage, 
seepage, and diversion (referred to as Delta Channel Depletion [DCD]). Typically, the total 
drainage or pumping rate ranges from a few cfs to a few hundred cfs on Lower Old River and 
tributaries. Given that the tidally averaged flow during the low flow period is of similar order of 
magnitude (i.e., hundreds of cfs), DCD can have a strong impact on the flow and salinity in the 
system. 

The salinity in the system varies spatially and temporally throughout tidal cycles and seasons. 
Along the tributaries, salinity is generally higher upstream than downstream, which results in a 
net positive flux of salt entering Lower Old River during the ebb tide. During the low flow 
period, the ambient salinity level on Lower Old River and effective flushing of the system can be 
affected by the tidally averaged flow through the reach. Many temporal patterns can result, 
depending on the relative contributions of mass and flow from Vernalis and of mass loadings 
from in-Delta sources. The spatial and temporal variations of salinity are what make the sources 
and mass loadings of the interior southern Delta possible to infer. 

Correctly modeling the flow circulation patterns in the southern Delta system is key to the 
success of the modeling study, and modeling in turn represents an opportunity to synthesize 
information that is gathered as part of the project. Two such circulation patterns in the system 
have been identified: the null zones/convergency zones on the three branches down Doughty 
Cut; and the Pescadero circulation pattern. DWR will need to improve knowledge of these flow 
patterns before we can accurately assimilate EC sources in the system, and gaining insight into 
the flow patterns requires corroboration of observational data from various sources and 
hydrodynamic-modeling efforts. 

Null zones/convergency zones on Old River, Grant Line Canal, and Middle River can be 
observed by comparing measured continuous flow rates from paired observational sites, one 
located at the entrance and the other at the exit of the branch. On Old River, additional depletion 
of ~100–200 cfs is required to explain the discrepancy between the upstream (OLD) and 
downstream (ORM) continuous flow rates. Similar null zones/convergency zones also exist on 
Grant Line Canal and Middle River, but with lower net depletion rates (100 cfs for Grant Line 
Canal, and 30 cfs for Middle River). Due to this change, the impact of adding such a null zone 
has been tested in a preliminary hydrodynamic run with the Delta Simulation Model II (DMS2). 
The tidally averaged flow and the tidal flow–range modeled have been improved compared to 
observations. 

Tom Paine Slough has been known to be a major diversion channel for crop irrigation in the 
Pescadero district. Because the land elevation is higher in the south than the north of the 
Pescadero islands, the excess of applied water diverted from Tom Paine Slough is drained into 
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Paradise Cut. The backwater on Paradise Cut has extremely high EC (ranging from 2,500 to over 
4,000 microSiemens per centimeter [µS/cm]), and an estimate of the channel depletion rate on 
this dead-end slough is important to answer questions about the water exchange rate between 
Paradise Cut and Old River and the impact of the high observed EC in this slough on the rest of 
the system. Test General Transport Model (GTM) runs show that a negative depletion rate of 10-
cfs flow versus a positive 10-cfs depletion rate on Paradise Cut can result in drastically different 
modeled EC pattern. Therefore, correctly representing the Pescadero circulation pathway in this 
model is key to the success of DWR’s data-assimilation approach. 

3 Methods 
A data-assimilation approach that couples a mechanistic water quality model (DSM2-GTM) and 
a statistical filter (Parallel Data Assimilation Framework) to infer local salinity sources is 
described below. 

DSM2-GTM 
DSM2 and its suite of models have been the primary models in studying the hydrodynamic 
model and ecosystem in the Delta for water resources planning and management over the last 
few decades (e.g., Kimmerer 2008; Sridharan et al. 2018), and it has been proven to be effective 
in modeling flow, water level, and tidal excursions in the system. DSM2 represents the Delta 
system by a network of connected open channels and reservoirs (DeLong et al. 1997) and models 
the mass and flow exchanges between the computational nodes. A recent publication 
documenting the tidal characteristics of DSM2 can be found in Sridharan et al. (2018); however, 
their modeling results can be further improved if DCD (Liang and Suits 2018) and gate 
operations are properly represented in the model. 

The salinity field of the interior southern Delta is resolved by a one-dimensional (1D) GTM, 
which resolves advection using an explicit finite-volume approach and dispersion using an 
implicit, time-centered Crank–Nicolson scheme (Ateljevich et al. 2011). GTM is offline coupled 
to the DSM2 hydrodynamic model component (HYDRO), which provides the flow field. 

Although more complex 3D hydrodynamic and water quality models have been applied in the 
system, the high computational cost required by these models makes the application of data 
assimilation cumbersome and thus less desirable compared to a simpler 1D model. 

The work described in this study plan will be undertaken using historical or hindcast (a 
calculation used to determine probable conditions) data as it becomes available. This includes 
major tributary flows (i.e., Sacramento, San Joaquin, Mokelumne, Cosumnes, and Calaveras 
rivers and Yolo Bypass) and diversions (i.e., SWP and CVP, Contra Costa Water District, and 
North Bay Aqueduct). Outside of the interior southern Delta, sources and sinks are estimated 
using the DCD model (Liang and Suits 2017) and accompanying EC concentrations from Liang 
and Suits (2017, 2018). The assignments of consumptive use (sinks) and agricultural return flow 
(sources) from the DCD model is described in DWR 2015a and 2015b. As described in these 
reports, prior simulations with DCD suggests that modeling EC loads from the agricultural return 
flow helped to improve the local modeled EC, as well as X2, in the entire Delta system. Within 
the interior southern Delta, data assimilation is used to either supplement or replace these 
estimates. 
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PDAF 
As part of the preliminary work for this project, the authors developed a statistical filter for 
DSM2-GTM using a Parallel Data Assimilation Framework (PDAF: http://pdaf.awi.de
/trac/wiki), which has already been coupled to various surface-water hydrodynamic and water 
quality models worldwide (Nerger et al. 2005; Tödter and Bobo 2016; Saynisch and Thomas 
2012; Irrgang et al. 2017). PDAF can be applied to high-dimensional models at relatively low 
computational cost due to its ability to run model ensembles in parallel. This framework 
encapsules a suite of state-of-the-art linear and nonlinear stochastic filters (Vetra-Carvalho et al. 
2018; Nerger 2021; Nerger et al. 2012b). The possibility of quickly switching between different 
options of linear and nonlinear filters will enable the study team to further advance this approach 
for potentially assimilating other non-Gaussian water quality processes and parameters in the 
system. 

The particular filter chosen to use is LESTKF (Local error subspace transform Kalman filter), 
which is an ensemble-based Kalman filter, a variant of SEIK (singular “evolutive” interpolated 
Kalman) developed by Nerger et al. (2012a) and presented in a form resembling ETKF 
(ensemble transform Kalman filter; Bishop et al. 2001). An ensemble-based smoother was 
further developed for LESTKF by Nerger et al. (2014) to reduce previous model error based on 
future observations and has been shown to be effective when the error covariance of a previous 
step correlates with error covariance of the current step. 

Coupling Between the Two Models 
The specific technique DWR is applying is called the ensemble Kalman filter (EnKF), and the 
conceptual demonstration of this approach is shown on Figure 2. In Figure 2, Xa represents a 
model state, for example, the combined model state of salinity field and salinity sources. The 
forecast/ dynamic model in this study is DMS2 for hydrodynamic processes, GTM for EC 
transport, and a structural time series model for model EC sources. The forecast models make 
prediction of the model states. Its time evolution of modeled states Xf is shown by the blue line. 
The observations are represented by the red dots. The idea of the EnKF is that rather than 
assuming that the predicted model state is unique, it is assumed that there is an ensemble of 
possibilities for model predictions. DWR also assumes that the observations are not perfect, but 
rather have a known observational error. 

The gray bubble is called the analysis state, which is the assimilated model state. It lies 
somewhere in between the model (blue bubble) and observations (red bubble), and it is 
determined intuitively by the respective errors of the model versus the observations. The greater 
the model error, compared with observational error, the closer the analysis state will be to the 
observations. The model prediction with data assimilation is represented by the black line. 
Compared with the model prediction without assimilation (the blue line), this new prediction 
gives model results much closer to the observations. 
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Figure 2. Conceptual Demonstration of the EnKF Approach 

GTM is coupled with PDAF, and the detailed coupling process is shown on Figure 3. The 
DSM2–HYDRO is run first to generate output flow and diffusion, which will be used as input to 
drive GTM. The initial EC field and EC sources, used as a model input for GTM, are based on 
statistical priors generated from an ensemble of simulations. GTM will run for a predefined time 
interval (i.e., 1 hour in this study) and output a new EC field. The output EC field and EC 
sources form the model state for PDAF. Using the observed EC, PDAF will generate the filtered 
sources and filtered EC field. The filtered EC field will be used as the initial EC field for the next 
time step in GTM. The filtered sources will be used in a structural time series model to make a 
new prediction of EC sources, which will be used as the EC sources for the new time step. There 
are two ways to apply data assimilation. If only the right half of this diagram is applied, then data 
assimilation is only applied to the EC field. The run is referred to as Assimilation (no source). 
Alternatively, the entire diagram can be applied, and then data assimilation is applied to both the 
EC field and EC sources. The run is referred to as Assimilation (source). It is this second 
approach that provides the greatest accuracy, as well as insight concerning local contributions of 
salinity. 
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Figure 3. Diagram Illustrating the Online Coupling Process Between GTM and PDAF 

4 Initial Findings from Proof-Of-Concept Simulations 
The data-assimilation approach has been tested to infer EC loads for the study site on a 
preliminary basis. Six potential source locations (represented by the red circles on Figure 3) were 
chosen to assimilate the EC sources. Data assimilation was applied from March 2016 to 
December 2016, and the initial results for this test run are presented below. Note that these six 
locations used in the proof-of-concept simulations comprise only a small subset of the full set of 
candidate locations (see south Delta dischargers on Figure 4), which include the discharge 
locations identified in Table 1 and Figure 2 of Montoya (2012) and Delta Atlas, and in particular 
omits locations in Grant Line Canal and downstream of the Old River at Tracy Wildlife 
Association station. 

The source locations were chosen based on the knowledge of significant dischargers previous 
identified in Montoya (2007, 2012). At these chosen locations, either an obvious and repeated 
pattern of increased EC was recorded by the EC transects, or at least one known significant EC 
drainage was identified nearby. 
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Figure 4. Maps of the Delta System (Left) and the Study Site (Inset) 

Figure 5 shows the inferred EC sources using the data-assimilation approach. Salt flux from the 
six source locations was calculated from the EC load following the unit conversion by DWR 
(2018). EC (in units of µS/cm) is converted to total dissolved solids (TDS) concentration (in 
units of milligrams per liter ) using a TDS constant (i.e., EC/TDS ratio) of 0.58, and then salt 
flux (with a unit kt/day) is calculated by TDS times the flow rate. There are no long-term. 
Continuous monitoring data of sources in the system, so there can be no direct validation of EC 
sources. However, Montoya et. all did have some observations of flow rate and EC levels from a 
few grab samples at these source locations in 2007 and 2012 (Montoya 2007, 2012); multiplying 
the maximum observed flow rate times the maximum observed EC yields a bracketing value for 
the maximum EC loads ever observed. Note that the Old River above Doughty Cut Monitoring 
Station (ORX) lumped all EC sources between Vernalis and Old River Head. In Montoya (2007), 
significant EC sources along this section of the stream were identified; however, not all EC 
sources have observational data. Therefore, the EC threshold given on Figure 5 for ORX did not 
include these EC loads and may thus be underestimated. 

The red lines on Figure 5 highlight the observed upper limit of EC loads over the years of grab 
samples. The envelope of what was inferred matches well with the envelope of the grab samples 
as shown on Figure 5. 
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Figure 5. The inferred EC sources by the data-assimilation approach for 2016. The dark lines represent 
the ensemble mean of the inferred sources, the clouds of colored lines represent the ensembles, and the 
red lines represent the upper limit of EC sources ever observed at the corresponding source locations. The 
locations for the sources can be found on Figure 4. 

The comparisons of modeled versus observed EC are shown on Figure 6. It is clear that inferring 
EC sources greatly helped to improve the modeled EC fields at all observational sites (dark blue 
lines) compared to EC sources modeled by DCD model (light blue lines) or without EC sources 
(median blue lines). 
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Figure 6. Comparisons between observed and modeled EC. The gray lines at the back represent real 
observations; the very light blue lines (normally at the very bottom) indicate modeling results without 
data assimilation, but instead it included Delta Channel Depletion, a separate offline model that estimates 
EC loads into the system. This serves as the best current EC model without data assimilation. The 
medium blue lines represent data assimilation on EC filed only (without inferring the EC sources). The 
dark blue lines represent data assimilation on both EC field and EC sources (with EC sources inferred 
from the model) and without using the Delta Channel Depletion model. The locations for the 
observational sites can be found on Figure 4. 

Validation 
Standard validation metrics are not sufficient for data-assimilation methods because the model 
results are nudged toward observations. As such, validation relies more than ever on reserved 
data and prediction. The following metrics will be reported. 

1) Comparisons with observations at continuous monitoring stations with and without 
source terms, analogous to Figure 6 from the proof-of-concept run. 

2) Prediction/extrapolation results showing the benefits of the inferred source terms when 
extrapolated in time or between years (which is expected to vary). 

3) Spatial comparisons to high speed monitoring data, in order to confirm that between-
station spatial patterns are correctly inferred from continuous stations. 

4) Comparison with any grab samples or discharge measurements made available over the 
course of the project. 

5) Characterization of sources that are not uniquely determined based on the model and 
monitoring network; the characterization will be carried out using response function 
(Green’s function) methods and decompositions such as that of Pous (1985) that have 
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produced derivative works in various disciplines; this analysis will be carried out on a 
subset of 2022 data. 

6) Analysis of skill improvements using the inferred salinity sources within SCHISM offline 
of data assimilation. 

Uncertainties and Caveats 
The prototype work described in the previous sections reveals a few uncertainties that may affect 
data assimilation work, such as regions that are poorly covered by monitoring or subject to 
uncertainty concerning mean flow direction. Some of these uncertainties will be addressed by 
targeted field observations or improved data analysis, and the resulting measured data will be 
incorporated into the method. Other uncertainties may remain unknown, in which case sensitivity 
studies will be used to quantify the impact of misspecification. Examples include the following. 

• Uncertainty in the amplitude and direction of mean flow during low-flow period near the 
null zone on Old River. During the period when the Old River at Tracy Barrier is 
installed, the measured flow direction on Old River at Tracy is westward, whereas the 
measured flow rate at Mountain House (west of Tracy Blvd) is eastward. This indicates a 
convergence of flow between the two observation sites when the temporary agricultural 
barriers are installed. It is estimated that 100 to 200 cfs of water is diverted between the 
two sites, assuming that the flow measurements are accurate. However, the exact 
locations and the flow rate of the flow diversion are uncertain. Additional flow 
observational sites will be implemented between the two sites to gain insight on flow 
direction in the region. Until the data become available, assumptions will have to be 
made about the flow diversion to match the field observations of flow rates at both sites. 

• Uncertainty in the flow diversion from Tom Paine Slough and drainage into Paradise 
Cut. Estimated diversions are on the order of tens of cfs. Previous modeling results show 
that the assimilated EC sources are sensitive to the net flow direction on Paradise Cut and 
the flow direction (i.e., sink) that occurs under current channel depletion models is 
thought to be in error. Currently, the Paradise Cut flow gauge is under recalibration for 
conditions when the temporary barriers are in place; also planned is a dye study that can 
corroborate the net-flow direction. Corroboration of analyzing observed data from 
multiple sources and modeling efforts will also help reduce this uncertainty. 

• Uncertainty concerning the locations of the most significant EC loads/sources and lack of 
uniqueness in the source inference method. It is challenging to assimilate EC sources 
from all potential source locations (50+), so the work thus far has incorporated expert 
judgement and mapping data from Montoya (2007, 2012). The study will aggregate the 
sources across locations on a reach level (about 4–8 kilometers), which is the most 
specificity allowed by the DSM2 interface. The report will describe, via sensitivity tests, 
the consequences of misspecification. DWR will also use a modified method similar to 
that of Pous (1985), which computes combinations of sources that would not be well 
identified by the data. 

5 Long-Term Monitoring and Reporting 
Model scenario runs will help identify a range of natural conditions, under which EC loads at 
current levels will likely cause EC levels to exceed the reach-based compliance standard, and 
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potential management actions that can be taken to address this issue. The model study will also 
be used to optimize the current continuous observational network and identify data gaps that can 
reduce model uncertainties. Lastly, this study will potentially contribute to the development of an 
operational EC model that can simulate the spatial and temporal variations of EC fields in almost 
real time. 

6 Study Plan and Deliverables 
DSM2 and PDAF will be applied from January 2016 to December 2023, applying updates as 
field data becomes available. Historical/hindcast data will be used to supply boundary-flow and 
water-quality data for Vernalis, as well as for remote boundaries and mass/volume sources that 
are outside the study area. 

Key outcomes expected from the effort are as follows: 

• Analysis of multiple sources of observational data (including flow rates, water levels, and 
Electronic Water Rights Information Management System flow-diversion rates) to obtain 
improved representation for and understanding of the local-flow null/convergence zones 
and Pescadero Tract circulation patterns. The knowledge gained from this analysis will 
be used to revise the existing DCD model and DSM2 baseline run. A presentation based 
on the findings from the integrated modeling and data analysis effort will be presented 
annually, or as needed, in an participating organization3 meeting under the title “Revision 
of Assumptions and Inputs.” 

• Mass loadings for the interior southern Delta sources in .csv files on California Natural 
Resources Agency Open Data portal, along with interpretive information, versioned in 
accordance with technical progress, interested-party input, and availability of data. The 
key hypothesis of the data-assimilation component is that sources can be inferred 
sufficiently to explain mass loadings not explainable by Vernalis inflow with reach-level 
(4–8 kilometers) spatial accuracy. 

• A Study Report to include the following. 

o Description of the methodology and data sources 
o Interannual comparisons of mass loadings 
o Quantification of errors with respect to high-speed measurements 
o Assessment of sensitivity to misspecification of source flows and candidate 

source locations 
o Quantification of the role/value of MSS-augmented measurements in reducing 

uncertainty 

A list of anticipated tasks, milestones and deliverables are presented below. 

• Task 1: Apply the data-assimilation approach from January 2016 to December 2021 to 
infer EC sources and refine the hydrodynamic-calibration and volumetric-
conceptual/quantitative models. 

 
3 This document uses the term participating organization instead of stakeholder. 
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o Initial mass loadings for use in SCHISM in 2021 (from January to December 
2021), anticipated for April 2022 

o Completion of full period and presentation to interested parties by December 
2022 

• Task 2: Update report based on January 2021–December 2022 field data. 

o Update report, anticipated for June 2023 
o Mass loadings revised for January 2016–December 2021 and updated through 

2022, anticipated for June 2023 

• Task 3: Complete a report on data integration/data assimilation, summarizing all findings 
for MSS (draft anticipated by June 2024 and final report anticipated by December 2024). 

In addition, an annual presentation and summary of modeling assumptions will be delivered to 
interested parties to summarize data analysis and new modeling assumptions. This deliverable is 
listed under the SCHISM section, but it includes synthesis that is applicable to both models, as 
well as the field work of the MSS. 
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